A tracer experiment study to evaluate the CALPUFF real time application in a near-field complex terrain setting

CALPUFF is an atmospheric source-receptor model recommended by the US Environmental Protection Agency (EPA) for use on a case-by-case basis in complex terrain and wind condition. As the bulk of validation of CALPUFF has focused on long-range or short-range but long-term dispersion, we can not gauge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atmospheric environment (1994) 2011-12, Vol.45 (39), p.7525-7532
Hauptverfasser: cui, Huiling, Yao, Rentai, Xu, Xiangjun, Xin, Cuntian, Yang, jinming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:CALPUFF is an atmospheric source-receptor model recommended by the US Environmental Protection Agency (EPA) for use on a case-by-case basis in complex terrain and wind condition. As the bulk of validation of CALPUFF has focused on long-range or short-range but long-term dispersion, we can not gauge the reliability of the model for predicting the short-term emission in near-field especially complex terrain, and sometimes this situation is important for emergency emission. To validate the CALPUFF’s application in such condition, we carried out a tracer experiment in a near-field complex terrain setting and used CALPUFF atmospheric dispersion model to simulate the tracer experiment in real condition. From the centroid trajectory comparison of predictions and measures, we can see that the model can correctly predict the centroid trajectory and shape of tracer cloud, and the results also indicate that sufficient observed weather data only can develop a good wind field for near-field. From the concentration comparison in each arc, we can see the model underestimate horizontal extent of tracer puff and can not reflect the irregular characters showed in measurements. The result of global analysis is FOEX of −25.91%, FA2 of 27.06%, FA5 of 61.41%. The simulations shows that the CALPUFF can simulate the position and direction of tracer cloud in near-field complex terrain but underestimate over measurements especially in peak concentrations.
ISSN:1352-2310
1873-2844
DOI:10.1016/j.atmosenv.2011.08.041