Phylogenetic grouping, curvature and metabolic scaling in terrestrial invertebrates
Ecology Letters (2011) 14: 993–1000 For more than a century, the scaling of animal metabolic rates with individual body masses and environmental temperature has predominantly been described by power‐law and exponential relationships respectively. Many theories have been proposed to explain these sca...
Gespeichert in:
Veröffentlicht in: | Ecology letters 2011-10, Vol.14 (10), p.993-1000 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ecology Letters (2011) 14: 993–1000
For more than a century, the scaling of animal metabolic rates with individual body masses and environmental temperature has predominantly been described by power‐law and exponential relationships respectively. Many theories have been proposed to explain these scaling relationships, but were challenged by empirically documented curvatures on double‐logarithmic scales. In the present study, we present a novel data set comprising 3661 terrestrial (mainly soil) invertebrate respiration rates from 192 independent sources across a wide range in body masses, environmental temperatures and phylogenetic groups. Although our analyses documented power‐law and exponential scaling with body masses and temperature, respectively, polynomial models identified curved deviations. Interestingly, complex scaling models accounting for phylogenetic groups were able to remove curvatures except for a negative curvature at the highest temperatures (>30 °C) indicating metabolic down regulation. This might indicate that the tremendous differences in invertebrate body architectures, ecology and physiology may cause severely different metabolic scaling processes. |
---|---|
ISSN: | 1461-023X 1461-0248 |
DOI: | 10.1111/j.1461-0248.2011.01660.x |