Baroreflex control of muscle sympathetic nerve activity as a mechanism for persistent sympathoexcitation following acute hypoxia in humans

This study tested the hypothesis that acute isocapnic hypoxia results in persistent resetting of the baroreflex to higher levels of muscle sympathetic nerve activity (MSNA), which outlasts the hypoxic stimulus. Cardiorespiratory measures were recorded in humans (26 ± 1 yr; n = 14; 3 women) during ba...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of physiology. Regulatory, integrative and comparative physiology integrative and comparative physiology, 2011-12, Vol.301 (6), p.R1779-R1785
Hauptverfasser: Querido, Jordan S, Wehrwein, Erica A, Hart, Emma C, Charkoudian, Nisha, Henderson, William R, Sheel, A William
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page R1785
container_issue 6
container_start_page R1779
container_title American journal of physiology. Regulatory, integrative and comparative physiology
container_volume 301
creator Querido, Jordan S
Wehrwein, Erica A
Hart, Emma C
Charkoudian, Nisha
Henderson, William R
Sheel, A William
description This study tested the hypothesis that acute isocapnic hypoxia results in persistent resetting of the baroreflex to higher levels of muscle sympathetic nerve activity (MSNA), which outlasts the hypoxic stimulus. Cardiorespiratory measures were recorded in humans (26 ± 1 yr; n = 14; 3 women) during baseline, exposure to 20 min of isocapnic hypoxia, and for 5 min following termination of hypoxia. The spontaneous baroreflex threshold technique was used to determine the change in baroreflex function during and following 20 min of isocapnic hypoxia (oxyhemoglobin saturation = 80%). From the spontaneous baroreflex analysis, the linear regression between diastolic blood pressure (DBP) and sympathetic burst occurrence, the T50 (DBP with a 50% likelihood of a burst occurring), and DBP error signal (DBP minus the T50) provide indexes of baroreflex function. MSNA and DBP increased in hypoxia and remained elevated during posthypoxia relative to baseline (P < 0.05). The DBP error signal became progressively less negative (i.e., smaller difference between DBP and T50) in the hypoxia and posthypoxia periods (baseline: -3.9 ± 0.8 mmHg; hypoxia: -1.4 ± 0.6 mmHg; posthypoxia: 0.2 ± 0.6 mmHg; P < 0.05). Hypoxia caused no change in the slope of the baroreflex stimulus-response curve; however, there was a shift toward higher pressures that favored elevations in MSNA, which persisted posthypoxia. Our results indicate that there is a resetting of the baroreflex in hypoxia that outlasts the stimulus and provide further explanation for the complex control of MSNA following acute hypoxia.
doi_str_mv 10.1152/ajpregu.00182.2011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_909289171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>909289171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-b38d7414ff0074523a8179dc184c2a491e8e1205bda417a68bb83bfc0dcd24723</originalsourceid><addsrcrecordid>eNpdkcFO3DAQhi3UqizQF-CArF56yuKxnY19bFctrYTEpZwjx5mwXiV2sB3YfYU-Ndmy9MBpDvP9v0bzEXIJbAlQ8muzHSM-TEvGQPElZwAnZDEveAFSsw9kwcRKFCsAfUrOUtoyxqSQ4hM55aDLCsrVgvz9bmKI2PW4ozb4HENPQ0eHKdkeadoPo8kbzM5Sj_EJqbHZPbm8pyZRQwe0G-NdGmgXIh0xJpcy-vwWDLizLpvsgp-Jvg_Pzj_MHVNGutmPYecMdZ5upsH4dEE-dqZP-Pk4z8n9zx9_1r-K27ub3-tvt4UVusxFI1RbSZBdx1glSy6Mgkq3FpS03EgNqBA4K5vWSKjMSjWNEk1nWWtbLisuzsnX194xhscJU64Hlyz2vfEYplRrprnSUMFMfnlHbsMU_XzcAVK8KuFQx18hG0NK8yvrMbrBxH0NrD54qo-e6n-e6oOnOXR1bJ6aAdv_kTcx4gVa75Nt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>909827512</pqid></control><display><type>article</type><title>Baroreflex control of muscle sympathetic nerve activity as a mechanism for persistent sympathoexcitation following acute hypoxia in humans</title><source>MEDLINE</source><source>American Physiological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Querido, Jordan S ; Wehrwein, Erica A ; Hart, Emma C ; Charkoudian, Nisha ; Henderson, William R ; Sheel, A William</creator><creatorcontrib>Querido, Jordan S ; Wehrwein, Erica A ; Hart, Emma C ; Charkoudian, Nisha ; Henderson, William R ; Sheel, A William</creatorcontrib><description>This study tested the hypothesis that acute isocapnic hypoxia results in persistent resetting of the baroreflex to higher levels of muscle sympathetic nerve activity (MSNA), which outlasts the hypoxic stimulus. Cardiorespiratory measures were recorded in humans (26 ± 1 yr; n = 14; 3 women) during baseline, exposure to 20 min of isocapnic hypoxia, and for 5 min following termination of hypoxia. The spontaneous baroreflex threshold technique was used to determine the change in baroreflex function during and following 20 min of isocapnic hypoxia (oxyhemoglobin saturation = 80%). From the spontaneous baroreflex analysis, the linear regression between diastolic blood pressure (DBP) and sympathetic burst occurrence, the T50 (DBP with a 50% likelihood of a burst occurring), and DBP error signal (DBP minus the T50) provide indexes of baroreflex function. MSNA and DBP increased in hypoxia and remained elevated during posthypoxia relative to baseline (P &lt; 0.05). The DBP error signal became progressively less negative (i.e., smaller difference between DBP and T50) in the hypoxia and posthypoxia periods (baseline: -3.9 ± 0.8 mmHg; hypoxia: -1.4 ± 0.6 mmHg; posthypoxia: 0.2 ± 0.6 mmHg; P &lt; 0.05). Hypoxia caused no change in the slope of the baroreflex stimulus-response curve; however, there was a shift toward higher pressures that favored elevations in MSNA, which persisted posthypoxia. Our results indicate that there is a resetting of the baroreflex in hypoxia that outlasts the stimulus and provide further explanation for the complex control of MSNA following acute hypoxia.</description><identifier>ISSN: 0363-6119</identifier><identifier>EISSN: 1522-1490</identifier><identifier>DOI: 10.1152/ajpregu.00182.2011</identifier><identifier>PMID: 21957156</identifier><identifier>CODEN: AJPRDO</identifier><language>eng</language><publisher>United States: American Physiological Society</publisher><subject>Adaptation, Physiological ; Adult ; Baroreflex - physiology ; Blood Pressure ; Cardiovascular system ; Female ; Heart Rate ; Humans ; Hypoxia ; Hypoxia - metabolism ; Male ; Muscle, Skeletal - innervation ; Muscle, Skeletal - physiology ; Nervous system ; Oxygen Consumption ; Physiology ; Sympathetic Nervous System - physiology</subject><ispartof>American journal of physiology. Regulatory, integrative and comparative physiology, 2011-12, Vol.301 (6), p.R1779-R1785</ispartof><rights>Copyright American Physiological Society Dec 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-b38d7414ff0074523a8179dc184c2a491e8e1205bda417a68bb83bfc0dcd24723</citedby><cites>FETCH-LOGICAL-c395t-b38d7414ff0074523a8179dc184c2a491e8e1205bda417a68bb83bfc0dcd24723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3039,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21957156$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Querido, Jordan S</creatorcontrib><creatorcontrib>Wehrwein, Erica A</creatorcontrib><creatorcontrib>Hart, Emma C</creatorcontrib><creatorcontrib>Charkoudian, Nisha</creatorcontrib><creatorcontrib>Henderson, William R</creatorcontrib><creatorcontrib>Sheel, A William</creatorcontrib><title>Baroreflex control of muscle sympathetic nerve activity as a mechanism for persistent sympathoexcitation following acute hypoxia in humans</title><title>American journal of physiology. Regulatory, integrative and comparative physiology</title><addtitle>Am J Physiol Regul Integr Comp Physiol</addtitle><description>This study tested the hypothesis that acute isocapnic hypoxia results in persistent resetting of the baroreflex to higher levels of muscle sympathetic nerve activity (MSNA), which outlasts the hypoxic stimulus. Cardiorespiratory measures were recorded in humans (26 ± 1 yr; n = 14; 3 women) during baseline, exposure to 20 min of isocapnic hypoxia, and for 5 min following termination of hypoxia. The spontaneous baroreflex threshold technique was used to determine the change in baroreflex function during and following 20 min of isocapnic hypoxia (oxyhemoglobin saturation = 80%). From the spontaneous baroreflex analysis, the linear regression between diastolic blood pressure (DBP) and sympathetic burst occurrence, the T50 (DBP with a 50% likelihood of a burst occurring), and DBP error signal (DBP minus the T50) provide indexes of baroreflex function. MSNA and DBP increased in hypoxia and remained elevated during posthypoxia relative to baseline (P &lt; 0.05). The DBP error signal became progressively less negative (i.e., smaller difference between DBP and T50) in the hypoxia and posthypoxia periods (baseline: -3.9 ± 0.8 mmHg; hypoxia: -1.4 ± 0.6 mmHg; posthypoxia: 0.2 ± 0.6 mmHg; P &lt; 0.05). Hypoxia caused no change in the slope of the baroreflex stimulus-response curve; however, there was a shift toward higher pressures that favored elevations in MSNA, which persisted posthypoxia. Our results indicate that there is a resetting of the baroreflex in hypoxia that outlasts the stimulus and provide further explanation for the complex control of MSNA following acute hypoxia.</description><subject>Adaptation, Physiological</subject><subject>Adult</subject><subject>Baroreflex - physiology</subject><subject>Blood Pressure</subject><subject>Cardiovascular system</subject><subject>Female</subject><subject>Heart Rate</subject><subject>Humans</subject><subject>Hypoxia</subject><subject>Hypoxia - metabolism</subject><subject>Male</subject><subject>Muscle, Skeletal - innervation</subject><subject>Muscle, Skeletal - physiology</subject><subject>Nervous system</subject><subject>Oxygen Consumption</subject><subject>Physiology</subject><subject>Sympathetic Nervous System - physiology</subject><issn>0363-6119</issn><issn>1522-1490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkcFO3DAQhi3UqizQF-CArF56yuKxnY19bFctrYTEpZwjx5mwXiV2sB3YfYU-Ndmy9MBpDvP9v0bzEXIJbAlQ8muzHSM-TEvGQPElZwAnZDEveAFSsw9kwcRKFCsAfUrOUtoyxqSQ4hM55aDLCsrVgvz9bmKI2PW4ozb4HENPQ0eHKdkeadoPo8kbzM5Sj_EJqbHZPbm8pyZRQwe0G-NdGmgXIh0xJpcy-vwWDLizLpvsgp-Jvg_Pzj_MHVNGutmPYecMdZ5upsH4dEE-dqZP-Pk4z8n9zx9_1r-K27ub3-tvt4UVusxFI1RbSZBdx1glSy6Mgkq3FpS03EgNqBA4K5vWSKjMSjWNEk1nWWtbLisuzsnX194xhscJU64Hlyz2vfEYplRrprnSUMFMfnlHbsMU_XzcAVK8KuFQx18hG0NK8yvrMbrBxH0NrD54qo-e6n-e6oOnOXR1bJ6aAdv_kTcx4gVa75Nt</recordid><startdate>201112</startdate><enddate>201112</enddate><creator>Querido, Jordan S</creator><creator>Wehrwein, Erica A</creator><creator>Hart, Emma C</creator><creator>Charkoudian, Nisha</creator><creator>Henderson, William R</creator><creator>Sheel, A William</creator><general>American Physiological Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TS</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201112</creationdate><title>Baroreflex control of muscle sympathetic nerve activity as a mechanism for persistent sympathoexcitation following acute hypoxia in humans</title><author>Querido, Jordan S ; Wehrwein, Erica A ; Hart, Emma C ; Charkoudian, Nisha ; Henderson, William R ; Sheel, A William</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-b38d7414ff0074523a8179dc184c2a491e8e1205bda417a68bb83bfc0dcd24723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adaptation, Physiological</topic><topic>Adult</topic><topic>Baroreflex - physiology</topic><topic>Blood Pressure</topic><topic>Cardiovascular system</topic><topic>Female</topic><topic>Heart Rate</topic><topic>Humans</topic><topic>Hypoxia</topic><topic>Hypoxia - metabolism</topic><topic>Male</topic><topic>Muscle, Skeletal - innervation</topic><topic>Muscle, Skeletal - physiology</topic><topic>Nervous system</topic><topic>Oxygen Consumption</topic><topic>Physiology</topic><topic>Sympathetic Nervous System - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Querido, Jordan S</creatorcontrib><creatorcontrib>Wehrwein, Erica A</creatorcontrib><creatorcontrib>Hart, Emma C</creatorcontrib><creatorcontrib>Charkoudian, Nisha</creatorcontrib><creatorcontrib>Henderson, William R</creatorcontrib><creatorcontrib>Sheel, A William</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Physical Education Index</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>American journal of physiology. Regulatory, integrative and comparative physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Querido, Jordan S</au><au>Wehrwein, Erica A</au><au>Hart, Emma C</au><au>Charkoudian, Nisha</au><au>Henderson, William R</au><au>Sheel, A William</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Baroreflex control of muscle sympathetic nerve activity as a mechanism for persistent sympathoexcitation following acute hypoxia in humans</atitle><jtitle>American journal of physiology. Regulatory, integrative and comparative physiology</jtitle><addtitle>Am J Physiol Regul Integr Comp Physiol</addtitle><date>2011-12</date><risdate>2011</risdate><volume>301</volume><issue>6</issue><spage>R1779</spage><epage>R1785</epage><pages>R1779-R1785</pages><issn>0363-6119</issn><eissn>1522-1490</eissn><coden>AJPRDO</coden><abstract>This study tested the hypothesis that acute isocapnic hypoxia results in persistent resetting of the baroreflex to higher levels of muscle sympathetic nerve activity (MSNA), which outlasts the hypoxic stimulus. Cardiorespiratory measures were recorded in humans (26 ± 1 yr; n = 14; 3 women) during baseline, exposure to 20 min of isocapnic hypoxia, and for 5 min following termination of hypoxia. The spontaneous baroreflex threshold technique was used to determine the change in baroreflex function during and following 20 min of isocapnic hypoxia (oxyhemoglobin saturation = 80%). From the spontaneous baroreflex analysis, the linear regression between diastolic blood pressure (DBP) and sympathetic burst occurrence, the T50 (DBP with a 50% likelihood of a burst occurring), and DBP error signal (DBP minus the T50) provide indexes of baroreflex function. MSNA and DBP increased in hypoxia and remained elevated during posthypoxia relative to baseline (P &lt; 0.05). The DBP error signal became progressively less negative (i.e., smaller difference between DBP and T50) in the hypoxia and posthypoxia periods (baseline: -3.9 ± 0.8 mmHg; hypoxia: -1.4 ± 0.6 mmHg; posthypoxia: 0.2 ± 0.6 mmHg; P &lt; 0.05). Hypoxia caused no change in the slope of the baroreflex stimulus-response curve; however, there was a shift toward higher pressures that favored elevations in MSNA, which persisted posthypoxia. Our results indicate that there is a resetting of the baroreflex in hypoxia that outlasts the stimulus and provide further explanation for the complex control of MSNA following acute hypoxia.</abstract><cop>United States</cop><pub>American Physiological Society</pub><pmid>21957156</pmid><doi>10.1152/ajpregu.00182.2011</doi></addata></record>
fulltext fulltext
identifier ISSN: 0363-6119
ispartof American journal of physiology. Regulatory, integrative and comparative physiology, 2011-12, Vol.301 (6), p.R1779-R1785
issn 0363-6119
1522-1490
language eng
recordid cdi_proquest_miscellaneous_909289171
source MEDLINE; American Physiological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Adaptation, Physiological
Adult
Baroreflex - physiology
Blood Pressure
Cardiovascular system
Female
Heart Rate
Humans
Hypoxia
Hypoxia - metabolism
Male
Muscle, Skeletal - innervation
Muscle, Skeletal - physiology
Nervous system
Oxygen Consumption
Physiology
Sympathetic Nervous System - physiology
title Baroreflex control of muscle sympathetic nerve activity as a mechanism for persistent sympathoexcitation following acute hypoxia in humans
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T21%3A22%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Baroreflex%20control%20of%20muscle%20sympathetic%20nerve%20activity%20as%20a%20mechanism%20for%20persistent%20sympathoexcitation%20following%20acute%20hypoxia%20in%20humans&rft.jtitle=American%20journal%20of%20physiology.%20Regulatory,%20integrative%20and%20comparative%20physiology&rft.au=Querido,%20Jordan%20S&rft.date=2011-12&rft.volume=301&rft.issue=6&rft.spage=R1779&rft.epage=R1785&rft.pages=R1779-R1785&rft.issn=0363-6119&rft.eissn=1522-1490&rft.coden=AJPRDO&rft_id=info:doi/10.1152/ajpregu.00182.2011&rft_dat=%3Cproquest_cross%3E909289171%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=909827512&rft_id=info:pmid/21957156&rfr_iscdi=true