Baroreflex control of muscle sympathetic nerve activity as a mechanism for persistent sympathoexcitation following acute hypoxia in humans

This study tested the hypothesis that acute isocapnic hypoxia results in persistent resetting of the baroreflex to higher levels of muscle sympathetic nerve activity (MSNA), which outlasts the hypoxic stimulus. Cardiorespiratory measures were recorded in humans (26 ± 1 yr; n = 14; 3 women) during ba...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of physiology. Regulatory, integrative and comparative physiology integrative and comparative physiology, 2011-12, Vol.301 (6), p.R1779-R1785
Hauptverfasser: Querido, Jordan S, Wehrwein, Erica A, Hart, Emma C, Charkoudian, Nisha, Henderson, William R, Sheel, A William
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study tested the hypothesis that acute isocapnic hypoxia results in persistent resetting of the baroreflex to higher levels of muscle sympathetic nerve activity (MSNA), which outlasts the hypoxic stimulus. Cardiorespiratory measures were recorded in humans (26 ± 1 yr; n = 14; 3 women) during baseline, exposure to 20 min of isocapnic hypoxia, and for 5 min following termination of hypoxia. The spontaneous baroreflex threshold technique was used to determine the change in baroreflex function during and following 20 min of isocapnic hypoxia (oxyhemoglobin saturation = 80%). From the spontaneous baroreflex analysis, the linear regression between diastolic blood pressure (DBP) and sympathetic burst occurrence, the T50 (DBP with a 50% likelihood of a burst occurring), and DBP error signal (DBP minus the T50) provide indexes of baroreflex function. MSNA and DBP increased in hypoxia and remained elevated during posthypoxia relative to baseline (P < 0.05). The DBP error signal became progressively less negative (i.e., smaller difference between DBP and T50) in the hypoxia and posthypoxia periods (baseline: -3.9 ± 0.8 mmHg; hypoxia: -1.4 ± 0.6 mmHg; posthypoxia: 0.2 ± 0.6 mmHg; P < 0.05). Hypoxia caused no change in the slope of the baroreflex stimulus-response curve; however, there was a shift toward higher pressures that favored elevations in MSNA, which persisted posthypoxia. Our results indicate that there is a resetting of the baroreflex in hypoxia that outlasts the stimulus and provide further explanation for the complex control of MSNA following acute hypoxia.
ISSN:0363-6119
1522-1490
DOI:10.1152/ajpregu.00182.2011