Losartan improves aortic endothelium-dependent relaxation via proline-rich tyrosine kinase 2/Src/Akt pathway in type 2 diabetic Goto-Kakizaki rats
In diabetic states, endothelial dysfunction is related to vascular complications. We hypothesized that insulin-induced relaxation and the associated proline-rich tyrosine kinase 2 (Pyk2)/Src/Akt pathway would be abnormal in aortas from the Goto-Kakizaki (GK) type 2 diabetic rat, which exhibits hyper...
Gespeichert in:
Veröffentlicht in: | American journal of physiology. Heart and circulatory physiology 2011-12, Vol.301 (6), p.H2383-H2394 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In diabetic states, endothelial dysfunction is related to vascular complications. We hypothesized that insulin-induced relaxation and the associated proline-rich tyrosine kinase 2 (Pyk2)/Src/Akt pathway would be abnormal in aortas from the Goto-Kakizaki (GK) type 2 diabetic rat, which exhibits hyperglycemia/insulin resistance, and that losartan treatment of such rats (25 mg·kg(-1)·day(-1) for 2 wk) would correct these abnormalities. Endothelium-dependent relaxation was by measuring isometric force in helical strips of aortas from four groups, each of 30 rats: normal Wistar (control), GK (diabetic), losartan-treated normal, and losartan-treated GK. Pyk2, Src, and Akt/endothelial nitric oxide synthase (eNOS) signaling-pathway protein levels and activities were assayed mainly by Western blotting and partly by immunohistochemistry. In GK (vs. age-matched control) aortas, various insulin-stimulated levels [nitric oxide production and the phosphorylations of eNOS at Ser(1177), of Akt at Thr(308), of phosphoinositide-dependent kinase-1 (PDK1) at Ser(241), of Src at Tyr(416), and of Pyk2 at Tyr(579)] were all significantly decreased and unaffected by either Src inhibitor (PP2) or Pyk2 inhibitor (AG17), while the insulin-stimulated levels of insulin receptor substrate (IRS)-1 phosphorylation at Ser(307), total-eNOS, and total-Akt were significantly increased. Losartan treatment normalized these altered levels. The insulin-stimulated phosphorylation levels of Src/PDK1/Akt/eNOS, but not of Pyk2, were decreased by PP2 in control and losartan-treated GK, but not in GK, aortas. These results suggest that in the GK diabetic aorta increased phospho-IRS-1 (at Ser(307)) and decreased Pyk2/Src activity inhibit insulin-induced stimulation of the PDK/Akt/eNOS pathway. The observed increase in phospho-IRS-1 (at Ser(307)) may result from increased angiotensin II activity. |
---|---|
ISSN: | 0363-6135 1522-1539 |
DOI: | 10.1152/ajpheart.00178.2011 |