A Rapid, Sensitive, and Selective Method for Quantitation of Lamprey Migratory Pheromones in River Water

The methodology of using fish pheromones, or chemical signatures, as a tool to monitor or manage species of fish is rapidly gaining popularity. Unequivocal detection and accurate quantitation of extremely low concentrations of these chemicals in natural waters is paramount to using this technique as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical ecology 2011-11, Vol.37 (11), p.1203-1207
Hauptverfasser: Stewart, Michael, Baker, Cindy F., Cooney, Terry
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The methodology of using fish pheromones, or chemical signatures, as a tool to monitor or manage species of fish is rapidly gaining popularity. Unequivocal detection and accurate quantitation of extremely low concentrations of these chemicals in natural waters is paramount to using this technique as a management tool. Various species of lamprey are known to produce a mixture of three important migratory pheromones; petromyzonol sulfate (PS), petromyzonamine disulfate (PADS), and petromyzosterol disulfate (PSDS), but presently there are no established robust methods for quantitation of all three pheromones. In this study, we report a new, highly sensitive and selective method for the rapid identification and quantitation of these pheromones in river water samples. The procedure is based on pre-concentration, followed by liquid chromatography/tandem mass spectrometry (LC/MS/MS) analysis. The method is fast, with unambiguous pheromone determination. Practical quantitation limits of 0.25 ng/l were achieved for PS and PADS and 2.5 ng/l for PSDS in river water, using a 200-fold pre-concentration, However, lower quantitation limits can be achieved with greater pre-concentration. The methodology can be modified easily to include other chemicals of interest. Furthermore, the pre-concentration step can be applied easily in the field, circumventing potential stability issues of these chemicals.
ISSN:0098-0331
1573-1561
DOI:10.1007/s10886-011-0029-y