Sense and Nonsense of Pathway Analysis Software in Proteomics

New developments in proteomics enable scientists to examine hundreds to thousands of proteins in parallel. Quantitative proteomics allows the comparison of different proteomes of cells, tissues, or body fluids with each other. Analyzing and especially organizing these data sets is often a Herculean...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of proteome research 2011-12, Vol.10 (12), p.5398-5408
Hauptverfasser: Müller, Thorsten, Schrötter, Andreas, Loosse, Christina, Helling, Stefan, Stephan, Christian, Ahrens, Maike, Uszkoreit, Julian, Eisenacher, Martin, Meyer, Helmut E., Marcus, Katrin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:New developments in proteomics enable scientists to examine hundreds to thousands of proteins in parallel. Quantitative proteomics allows the comparison of different proteomes of cells, tissues, or body fluids with each other. Analyzing and especially organizing these data sets is often a Herculean task. Pathway Analysis software tools aim to take over this task based on present knowledge. Companies promise that their algorithms help to understand the significance of scientist’s data, but the benefit remains questionable, and a fundamental systematic evaluation of the potential of such tools has not been performed until now. Here, we tested the commercial Ingenuity Pathway Analysis tool as well as the freely available software STRING using a well-defined study design in regard to the applicability and value of their results for proteome studies. It was our goal to cover a wide range of scientific issues by simulating different established pathways including mitochondrial apoptosis, tau phosphorylation, and Insulin-, App-, and Wnt-signaling. Next to a general assessment and comparison of the pathway analysis tools, we provide recommendations for users as well as for software developers to improve the added value of a pathway study implementation in proteomic pipelines.
ISSN:1535-3893
1535-3907
DOI:10.1021/pr200654k