A simple, robust, and on-site microwave technique for determining water-to-cement ratio (w/c) of fresh Portland cement-based materials
Inspection and evaluation of cement-based materials such as concrete is of great interest to the construction industry. In particular, real-time and on-site evaluation of water-to-cement ratio (w/c) is an important practical issue, since the compressive strength of a concrete structure is significan...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on instrumentation and measurement 2001-10, Vol.50 (5), p.1255-1263 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Inspection and evaluation of cement-based materials such as concrete is of great interest to the construction industry. In particular, real-time and on-site evaluation of water-to-cement ratio (w/c) is an important practical issue, since the compressive strength of a concrete structure is significantly influenced by its w/c. Currently, there is no single real-time, on-site, relatively inexpensive, easy-to-implement, and operator friendly technique for evaluating this parameter. Microwave nondestructive testing and evaluation techniques have shown great promise when used for inspection and evaluation of the properties of cement-based materials. In this paper, the optimal design of a monopole antenna probe used to evaluate w/c of fresh cement-based materials in real-time and in-situ is presented. This probe, operating at 3 GHz, is used along with a reflectometer whose DC output voltage is shown to be linearly correlated to w/c of fresh cement paste and fresh concrete specimens. This paper presents the optimal probe design procedure, the experimental verification of the results, and the results of using the custom-made reflectometer for quick and robust w/c measurement of fresh cement paste and concrete. |
---|---|
ISSN: | 0018-9456 1557-9662 |
DOI: | 10.1109/19.963194 |