A simple, robust, and on-site microwave technique for determining water-to-cement ratio (w/c) of fresh Portland cement-based materials

Inspection and evaluation of cement-based materials such as concrete is of great interest to the construction industry. In particular, real-time and on-site evaluation of water-to-cement ratio (w/c) is an important practical issue, since the compressive strength of a concrete structure is significan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement 2001-10, Vol.50 (5), p.1255-1263
Hauptverfasser: Mubarak, K., Bois, K.J., Zoughi, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Inspection and evaluation of cement-based materials such as concrete is of great interest to the construction industry. In particular, real-time and on-site evaluation of water-to-cement ratio (w/c) is an important practical issue, since the compressive strength of a concrete structure is significantly influenced by its w/c. Currently, there is no single real-time, on-site, relatively inexpensive, easy-to-implement, and operator friendly technique for evaluating this parameter. Microwave nondestructive testing and evaluation techniques have shown great promise when used for inspection and evaluation of the properties of cement-based materials. In this paper, the optimal design of a monopole antenna probe used to evaluate w/c of fresh cement-based materials in real-time and in-situ is presented. This probe, operating at 3 GHz, is used along with a reflectometer whose DC output voltage is shown to be linearly correlated to w/c of fresh cement paste and fresh concrete specimens. This paper presents the optimal probe design procedure, the experimental verification of the results, and the results of using the custom-made reflectometer for quick and robust w/c measurement of fresh cement paste and concrete.
ISSN:0018-9456
1557-9662
DOI:10.1109/19.963194