Local convex directions for Hurwitz stable polynomials
A condition for a polynomial p(s) to be a local convex direction for a Hurwitz stable polynomial q(s) is derived. The condition is in terms of polynomials associated with the even and odd parts of p(s) and q ( s), and constitutes a generalization of Rantzer's phase-growth condition for global c...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2002-03, Vol.47 (3), p.532-537 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A condition for a polynomial p(s) to be a local convex direction for a Hurwitz stable polynomial q(s) is derived. The condition is in terms of polynomials associated with the even and odd parts of p(s) and q ( s), and constitutes a generalization of Rantzer's phase-growth condition for global convex directions. It is used to determine convex directions for certain subsets of Hurwitz stable polynomials. |
---|---|
ISSN: | 0018-9286 1558-2523 |
DOI: | 10.1109/9.989156 |