A Nonlocal Vector Calculus with Application to Nonlocal Boundary Value Problems

We develop a calculus for nonlocal operators that mimics Gauss's theorem and Green's identities of the classical vector calculus. The operators we define do not involve derivatives. We then apply the nonlocal calculus to define weak formulations of nonlocal "boundary-value" probl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multiscale modeling & simulation 2010-01, Vol.8 (5), p.1581-1598
Hauptverfasser: Gunzburger, Max, Lehoucq, R B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1598
container_issue 5
container_start_page 1581
container_title Multiscale modeling & simulation
container_volume 8
creator Gunzburger, Max
Lehoucq, R B
description We develop a calculus for nonlocal operators that mimics Gauss's theorem and Green's identities of the classical vector calculus. The operators we define do not involve derivatives. We then apply the nonlocal calculus to define weak formulations of nonlocal "boundary-value" problems that mimic the Dirichlet and Neumann problems for second-order scalar elliptic partial differential equations. For the nonlocal problems, we derive a fundamental solution and Green's functions, demonstrate that weak formulations of the nonlocal "boundary-value" problems are well posed, and show how, under appropriate limits, the nonlocal problems reduce to their local analogues. [PUBLICATION ABSTRACT]
doi_str_mv 10.1137/090766607
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_907962964</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2410661321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-cb29ca6c1c5298046cceb1bfef286bcfb32e602cad079dfe8de5bf781161349b3</originalsourceid><addsrcrecordid>eNpdkEtLxDAUhYMoOI4u_AfBjbio5tEmzbIOvmBwXOhsS3KbYodMU5MG8d9bGRnB1T2Lj8O5H0LnlFxTyuUNUUQKIYg8QDNa5CTjuZCH-1yoY3QS44YQRgQjM7Sq8LPvnQft8NrC6ANeaAfJpYg_u_EdV8PgOtBj53s8-j_41qe-0eELr7VLFr8Eb5zdxlN01GoX7dnvnaO3-7vXxWO2XD08LaplBqwsxwwMU6AFUCiYKkkuAKyhprUtK4WB1nBmBWGgGyJV09qysYVpZUmpoDxXhs_R5a53CP4j2TjW2y6CdU731qdYTxqUYErkE3nxj9z4FPppXF1KJRmhik_Q1Q6C4GMMtq2H0G2n92pK6h-x9V4s_wba7GpD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>879720193</pqid></control><display><type>article</type><title>A Nonlocal Vector Calculus with Application to Nonlocal Boundary Value Problems</title><source>SIAM Journals Online</source><creator>Gunzburger, Max ; Lehoucq, R B</creator><creatorcontrib>Gunzburger, Max ; Lehoucq, R B</creatorcontrib><description>We develop a calculus for nonlocal operators that mimics Gauss's theorem and Green's identities of the classical vector calculus. The operators we define do not involve derivatives. We then apply the nonlocal calculus to define weak formulations of nonlocal "boundary-value" problems that mimic the Dirichlet and Neumann problems for second-order scalar elliptic partial differential equations. For the nonlocal problems, we derive a fundamental solution and Green's functions, demonstrate that weak formulations of the nonlocal "boundary-value" problems are well posed, and show how, under appropriate limits, the nonlocal problems reduce to their local analogues. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 1540-3459</identifier><identifier>EISSN: 1540-3467</identifier><identifier>DOI: 10.1137/090766607</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Boundary value problems ; Calculus ; Derivatives ; Dirichlet problem ; Mathematical analysis ; Mathematical models ; Normal distribution ; Operators ; Partial differential equations ; Studies ; Vectors (mathematics)</subject><ispartof>Multiscale modeling &amp; simulation, 2010-01, Vol.8 (5), p.1581-1598</ispartof><rights>Copyright Society for Industrial and Applied Mathematics 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-cb29ca6c1c5298046cceb1bfef286bcfb32e602cad079dfe8de5bf781161349b3</citedby><cites>FETCH-LOGICAL-c288t-cb29ca6c1c5298046cceb1bfef286bcfb32e602cad079dfe8de5bf781161349b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,3173,27911,27912</link.rule.ids></links><search><creatorcontrib>Gunzburger, Max</creatorcontrib><creatorcontrib>Lehoucq, R B</creatorcontrib><title>A Nonlocal Vector Calculus with Application to Nonlocal Boundary Value Problems</title><title>Multiscale modeling &amp; simulation</title><description>We develop a calculus for nonlocal operators that mimics Gauss's theorem and Green's identities of the classical vector calculus. The operators we define do not involve derivatives. We then apply the nonlocal calculus to define weak formulations of nonlocal "boundary-value" problems that mimic the Dirichlet and Neumann problems for second-order scalar elliptic partial differential equations. For the nonlocal problems, we derive a fundamental solution and Green's functions, demonstrate that weak formulations of the nonlocal "boundary-value" problems are well posed, and show how, under appropriate limits, the nonlocal problems reduce to their local analogues. [PUBLICATION ABSTRACT]</description><subject>Boundary value problems</subject><subject>Calculus</subject><subject>Derivatives</subject><subject>Dirichlet problem</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Normal distribution</subject><subject>Operators</subject><subject>Partial differential equations</subject><subject>Studies</subject><subject>Vectors (mathematics)</subject><issn>1540-3459</issn><issn>1540-3467</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkEtLxDAUhYMoOI4u_AfBjbio5tEmzbIOvmBwXOhsS3KbYodMU5MG8d9bGRnB1T2Lj8O5H0LnlFxTyuUNUUQKIYg8QDNa5CTjuZCH-1yoY3QS44YQRgQjM7Sq8LPvnQft8NrC6ANeaAfJpYg_u_EdV8PgOtBj53s8-j_41qe-0eELr7VLFr8Eb5zdxlN01GoX7dnvnaO3-7vXxWO2XD08LaplBqwsxwwMU6AFUCiYKkkuAKyhprUtK4WB1nBmBWGgGyJV09qysYVpZUmpoDxXhs_R5a53CP4j2TjW2y6CdU731qdYTxqUYErkE3nxj9z4FPppXF1KJRmhik_Q1Q6C4GMMtq2H0G2n92pK6h-x9V4s_wba7GpD</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Gunzburger, Max</creator><creator>Lehoucq, R B</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100101</creationdate><title>A Nonlocal Vector Calculus with Application to Nonlocal Boundary Value Problems</title><author>Gunzburger, Max ; Lehoucq, R B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-cb29ca6c1c5298046cceb1bfef286bcfb32e602cad079dfe8de5bf781161349b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Boundary value problems</topic><topic>Calculus</topic><topic>Derivatives</topic><topic>Dirichlet problem</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Normal distribution</topic><topic>Operators</topic><topic>Partial differential equations</topic><topic>Studies</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gunzburger, Max</creatorcontrib><creatorcontrib>Lehoucq, R B</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Multiscale modeling &amp; simulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gunzburger, Max</au><au>Lehoucq, R B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Nonlocal Vector Calculus with Application to Nonlocal Boundary Value Problems</atitle><jtitle>Multiscale modeling &amp; simulation</jtitle><date>2010-01-01</date><risdate>2010</risdate><volume>8</volume><issue>5</issue><spage>1581</spage><epage>1598</epage><pages>1581-1598</pages><issn>1540-3459</issn><eissn>1540-3467</eissn><abstract>We develop a calculus for nonlocal operators that mimics Gauss's theorem and Green's identities of the classical vector calculus. The operators we define do not involve derivatives. We then apply the nonlocal calculus to define weak formulations of nonlocal "boundary-value" problems that mimic the Dirichlet and Neumann problems for second-order scalar elliptic partial differential equations. For the nonlocal problems, we derive a fundamental solution and Green's functions, demonstrate that weak formulations of the nonlocal "boundary-value" problems are well posed, and show how, under appropriate limits, the nonlocal problems reduce to their local analogues. [PUBLICATION ABSTRACT]</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/090766607</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1540-3459
ispartof Multiscale modeling & simulation, 2010-01, Vol.8 (5), p.1581-1598
issn 1540-3459
1540-3467
language eng
recordid cdi_proquest_miscellaneous_907962964
source SIAM Journals Online
subjects Boundary value problems
Calculus
Derivatives
Dirichlet problem
Mathematical analysis
Mathematical models
Normal distribution
Operators
Partial differential equations
Studies
Vectors (mathematics)
title A Nonlocal Vector Calculus with Application to Nonlocal Boundary Value Problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T05%3A31%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Nonlocal%20Vector%20Calculus%20with%20Application%20to%20Nonlocal%20Boundary%20Value%20Problems&rft.jtitle=Multiscale%20modeling%20&%20simulation&rft.au=Gunzburger,%20Max&rft.date=2010-01-01&rft.volume=8&rft.issue=5&rft.spage=1581&rft.epage=1598&rft.pages=1581-1598&rft.issn=1540-3459&rft.eissn=1540-3467&rft_id=info:doi/10.1137/090766607&rft_dat=%3Cproquest_cross%3E2410661321%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=879720193&rft_id=info:pmid/&rfr_iscdi=true