A Nonlocal Vector Calculus with Application to Nonlocal Boundary Value Problems

We develop a calculus for nonlocal operators that mimics Gauss's theorem and Green's identities of the classical vector calculus. The operators we define do not involve derivatives. We then apply the nonlocal calculus to define weak formulations of nonlocal "boundary-value" probl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multiscale modeling & simulation 2010-01, Vol.8 (5), p.1581-1598
Hauptverfasser: Gunzburger, Max, Lehoucq, R B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We develop a calculus for nonlocal operators that mimics Gauss's theorem and Green's identities of the classical vector calculus. The operators we define do not involve derivatives. We then apply the nonlocal calculus to define weak formulations of nonlocal "boundary-value" problems that mimic the Dirichlet and Neumann problems for second-order scalar elliptic partial differential equations. For the nonlocal problems, we derive a fundamental solution and Green's functions, demonstrate that weak formulations of the nonlocal "boundary-value" problems are well posed, and show how, under appropriate limits, the nonlocal problems reduce to their local analogues. [PUBLICATION ABSTRACT]
ISSN:1540-3459
1540-3467
DOI:10.1137/090766607