A Nonlocal Vector Calculus with Application to Nonlocal Boundary Value Problems
We develop a calculus for nonlocal operators that mimics Gauss's theorem and Green's identities of the classical vector calculus. The operators we define do not involve derivatives. We then apply the nonlocal calculus to define weak formulations of nonlocal "boundary-value" probl...
Gespeichert in:
Veröffentlicht in: | Multiscale modeling & simulation 2010-01, Vol.8 (5), p.1581-1598 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We develop a calculus for nonlocal operators that mimics Gauss's theorem and Green's identities of the classical vector calculus. The operators we define do not involve derivatives. We then apply the nonlocal calculus to define weak formulations of nonlocal "boundary-value" problems that mimic the Dirichlet and Neumann problems for second-order scalar elliptic partial differential equations. For the nonlocal problems, we derive a fundamental solution and Green's functions, demonstrate that weak formulations of the nonlocal "boundary-value" problems are well posed, and show how, under appropriate limits, the nonlocal problems reduce to their local analogues. [PUBLICATION ABSTRACT] |
---|---|
ISSN: | 1540-3459 1540-3467 |
DOI: | 10.1137/090766607 |