Online elicitation of Mamdani-type fuzzy rules via TSK-based generalized predictive control
Many synergies have been proposed between soft-computing techniques, such as neural networks (NNs), fuzzy logic (FL), and genetic algorithms (GAs), which have shown that such hybrid structures can work well and also add more robustness to the control system design. In this paper, a new control archi...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on cybernetics 2003-06, Vol.33 (3), p.465-475 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Many synergies have been proposed between soft-computing techniques, such as neural networks (NNs), fuzzy logic (FL), and genetic algorithms (GAs), which have shown that such hybrid structures can work well and also add more robustness to the control system design. In this paper, a new control architecture is proposed whereby the on-line generated fuzzy rules relating to the self-organizing fuzzy logic controller (SOFLC) are obtained via integration with the popular generalized predictive control (GPC) algorithm using a Takagi-Sugeno-Kang (TSK)-based controlled autoregressive integrated moving average (CARIMA) model structure. In this approach, GPC replaces the performance index (PI) table which, as an incremental model, is traditionally used to discover, amend, and delete the rules. Because the GPC sequence is computed using predicted future outputs, the new hybrid approach rewards the time-delay very well. The new generic approach, named generalized predictive self-organizing fuzzy logic control (GPSOFLC), is simulated on a well-known nonlinear chemical process, the distillation column, and is shown to produce an effective fuzzy rule-base in both qualitative (minimum number of generated rules) and quantitative (good rules) terms. |
---|---|
ISSN: | 1083-4419 2168-2267 1941-0492 2168-2275 |
DOI: | 10.1109/TSMCB.2003.810901 |