Solar flare with a surge: Scenario, energy budget, and forecast

Based on the analysis of solar events on August 18, 1995 (SN/C1.9 limb event) and September 23, 1998 (3B/M6.9 disk event) we suggest a new scenario of a solar flare with a surge in which the return motion of a surge is a cause of additional energy release and formation of a second system of solar fl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cosmic research 2011-08, Vol.49 (4), p.308-318
Hauptverfasser: Sidorov, V. I., Kuzminykh, Yu. V., Yazev, S. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Based on the analysis of solar events on August 18, 1995 (SN/C1.9 limb event) and September 23, 1998 (3B/M6.9 disk event) we suggest a new scenario of a solar flare with a surge in which the return motion of a surge is a cause of additional energy release and formation of a second system of solar flare ribbons. Observations in H α line and data on X-ray emission fluxes in the range 1–8 Å and 0.5–4 Å are supplemented for the second case by the data in line 1550 Å. The scenario specifies two stages of development. During the first one the energy release proceeds in the current layer, which makes provisions both for acceleration of eruption upward from the solar surface and for the flare itself, including flare region heating, and radiation and thermal conductance losses. The second stage of the flare is supplied with energy due to a fall of the surge substance onto the chromosphere. The second pair of flare ribbons observed at this stage is suggested as a chromospheric criterion of realization of this scenario for disk flares. The energy released during the first stage of the flare on September 23, 1998 was equal to ∼3 · 10 31 erg. Its part consumed on flare processes is about ∼0.5 · 10 31 erg. The remaining part representing the eruption energy is consistent in order of magnitude with a calculated value of the flare energy on the second stage, which does not contradict the suggested scenario. Early recognition of such a scenario for flares on the disk can be used for prompt space weather forecast. In particular, a flare with a surge allows one to predict the absence of a bright core in a coronal mass ejection.
ISSN:0010-9525
1608-3075
DOI:10.1134/S0010952511030099