Fluid/Structure Interaction Computational Investigation of Blast-Wave Mitigation Efficacy of the Advanced Combat Helmet

To combat the problem of traumatic brain injury (TBI), a signature injury of the current military conflicts, there is an urgent need to design head protection systems with superior blast/ballistic impact mitigation capabilities. Toward that end, the blast impact mitigation performance of an advanced...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials engineering and performance 2011-08, Vol.20 (6), p.877-893
Hauptverfasser: Grujicic, M., Bell, W. C., Pandurangan, B., Glomski, P. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To combat the problem of traumatic brain injury (TBI), a signature injury of the current military conflicts, there is an urgent need to design head protection systems with superior blast/ballistic impact mitigation capabilities. Toward that end, the blast impact mitigation performance of an advanced combat helmet (ACH) head protection system equipped with polyurea suspension pads and subjected to two different blast peak pressure loadings has been investigated computationally. A fairly detailed (Lagrangian) finite-element model of a helmet/skull/brain assembly is first constructed and placed into an Eulerian air domain through which a single planar blast wave propagates. A combined Eulerian/Lagrangian transient nonlinear dynamics computational fluid/solid interaction analysis is next conducted in order to assess the extent of reduction in intra-cranial shock-wave ingress (responsible for TBI). This was done by comparing temporal evolutions of intra-cranial normal and shear stresses for the cases of an unprotected head and the helmet-protected head and by correlating these quantities with the three most common types of mild traumatic brain injury (mTBI), i.e., axonal damage, contusion, and subdural hemorrhage. The results obtained show that the ACH provides some level of protection against all investigated types of mTBI and that the level of protection increases somewhat with an increase in blast peak pressure. In order to rationalize the aforementioned findings, a shockwave propagation/reflection analysis is carried out for the unprotected head and helmet-protected head cases. The analysis qualitatively corroborated the results pertaining to the blast-mitigation efficacy of an ACH, but also suggested that there are additional shockwave energy dissipation phenomena which play an important role in the mechanical response of the unprotected/protected head to blast impact.
ISSN:1059-9495
1544-1024
DOI:10.1007/s11665-010-9724-z