Stochastic neural computation. II. Soft competitive learning
For pt. I see ibid., p.891-905. An investigation has been made into the use of stochastic arithmetic to implement an artificial neural network solution to a typical pattern recognition application. Optical character recognition is performed on very noisy characters in the E-13B MICR font. The artifi...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on computers 2001-09, Vol.50 (9), p.906-920 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For pt. I see ibid., p.891-905. An investigation has been made into the use of stochastic arithmetic to implement an artificial neural network solution to a typical pattern recognition application. Optical character recognition is performed on very noisy characters in the E-13B MICR font. The artificial neural network is composed of two layers, the first layer being a set of soft competitive learning subnetworks and the second a set of fully connected linear output neurons. The observed number of clock cycles in the stochastic case represents an order of magnitude improvement over the floating-point implementation assuming clock frequency parity. Network generalization capabilities were also compared based on the network squared error as a function of the amount of noise added to the input patterns. The stochastic network maintains a squared error within 10 percent of that of the floating-point implementation for a wide range of noise levels. |
---|---|
ISSN: | 0018-9340 1557-9956 |
DOI: | 10.1109/12.954506 |