Poisson intensity estimation for tomographic data using a wavelet shrinkage approach

We consider a two-dimensional (2-D) problem of positron-emission tomography (PET) where the random mechanism of the generation of the tomographic data is modeled by Poisson processes. The goal is to estimate the intensity function which corresponds to emission density. Using the wavelet-vaguelette d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2002-10, Vol.48 (10), p.2794-2802
Hauptverfasser: Cavalier, L., Ja-Yong Koo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2802
container_issue 10
container_start_page 2794
container_title IEEE transactions on information theory
container_volume 48
creator Cavalier, L.
Ja-Yong Koo
description We consider a two-dimensional (2-D) problem of positron-emission tomography (PET) where the random mechanism of the generation of the tomographic data is modeled by Poisson processes. The goal is to estimate the intensity function which corresponds to emission density. Using the wavelet-vaguelette decomposition (WVD), we propose an estimator based on thresholding of empirical vaguelette coefficients which attains the minimax rates of convergence on Besov function classes. Furthermore, we construct an adaptive estimator which attains the optimal rate of convergence up to a logarithmic term.
doi_str_mv 10.1109/TIT.2002.802632
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_907947727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1035132</ieee_id><sourcerecordid>639754</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-cd4d254602fbce1e7b428702c2c82e57c6267657bc7674dbbffdbe3b09df6e733</originalsourceid><addsrcrecordid>eNqFkTtPwzAQxy0EEqUwM7BYDDCl9TNORlTxqFQJhjJbjnNpXdq42Amo3x5XZUAMMJ3u7nfPP0KXlIwoJeV4Pp2PGCFsVBCWc3aEBlRKlZW5FMdoQAgtslKI4hSdxbhKrpCUDdD8xbsYfYtd20EbXbfDEDu3MZ1LwcYH3PmNXwSzXTqLa9MZ3EfXLrDBn-YD1tDhuAyufTMLwGa7Dd7Y5Tk6acw6wsW3HaLXh_v55CmbPT9OJ3ezzPKCdJmtRc2kyAlrKgsUVCVYoQizzBYMpLI5y1UuVWVVrkRdVU1TV8ArUtZNDorzIbo99E1j3_u0t964aGG9Ni34PuqSqFIoxVQib_4kWSEll0z8D1JJKOf7jte_wJXvQ5vO1bSURRpKWILGB8gGH2OARm9D-m3YaUr0XjWdVNN71fRBtVRxdahwAPCD5pKm7BfVc5Nz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195872702</pqid></control><display><type>article</type><title>Poisson intensity estimation for tomographic data using a wavelet shrinkage approach</title><source>IEEE Xplore</source><creator>Cavalier, L. ; Ja-Yong Koo</creator><creatorcontrib>Cavalier, L. ; Ja-Yong Koo</creatorcontrib><description>We consider a two-dimensional (2-D) problem of positron-emission tomography (PET) where the random mechanism of the generation of the tomographic data is modeled by Poisson processes. The goal is to estimate the intensity function which corresponds to emission density. Using the wavelet-vaguelette decomposition (WVD), we propose an estimator based on thresholding of empirical vaguelette coefficients which attains the minimax rates of convergence on Besov function classes. Furthermore, we construct an adaptive estimator which attains the optimal rate of convergence up to a logarithmic term.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2002.802632</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive estimation ; Adaptive systems ; Convergence ; Convergence of numerical methods ; Data reduction ; Density ; Emission ; Estimating techniques ; Estimators ; Inverse problems ; Linear programming ; Mathematical models ; Minimax methods ; Minimax technique ; Nonlinear programming ; Optimal systems ; Optimization ; Poisson distribution ; Positron emission tomography ; Random processes ; Stochastic processes ; Tomography ; Wavelet transforms</subject><ispartof>IEEE transactions on information theory, 2002-10, Vol.48 (10), p.2794-2802</ispartof><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-cd4d254602fbce1e7b428702c2c82e57c6267657bc7674dbbffdbe3b09df6e733</citedby><cites>FETCH-LOGICAL-c380t-cd4d254602fbce1e7b428702c2c82e57c6267657bc7674dbbffdbe3b09df6e733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1035132$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27915,27916,54749</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1035132$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cavalier, L.</creatorcontrib><creatorcontrib>Ja-Yong Koo</creatorcontrib><title>Poisson intensity estimation for tomographic data using a wavelet shrinkage approach</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>We consider a two-dimensional (2-D) problem of positron-emission tomography (PET) where the random mechanism of the generation of the tomographic data is modeled by Poisson processes. The goal is to estimate the intensity function which corresponds to emission density. Using the wavelet-vaguelette decomposition (WVD), we propose an estimator based on thresholding of empirical vaguelette coefficients which attains the minimax rates of convergence on Besov function classes. Furthermore, we construct an adaptive estimator which attains the optimal rate of convergence up to a logarithmic term.</description><subject>Adaptive estimation</subject><subject>Adaptive systems</subject><subject>Convergence</subject><subject>Convergence of numerical methods</subject><subject>Data reduction</subject><subject>Density</subject><subject>Emission</subject><subject>Estimating techniques</subject><subject>Estimators</subject><subject>Inverse problems</subject><subject>Linear programming</subject><subject>Mathematical models</subject><subject>Minimax methods</subject><subject>Minimax technique</subject><subject>Nonlinear programming</subject><subject>Optimal systems</subject><subject>Optimization</subject><subject>Poisson distribution</subject><subject>Positron emission tomography</subject><subject>Random processes</subject><subject>Stochastic processes</subject><subject>Tomography</subject><subject>Wavelet transforms</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkTtPwzAQxy0EEqUwM7BYDDCl9TNORlTxqFQJhjJbjnNpXdq42Amo3x5XZUAMMJ3u7nfPP0KXlIwoJeV4Pp2PGCFsVBCWc3aEBlRKlZW5FMdoQAgtslKI4hSdxbhKrpCUDdD8xbsYfYtd20EbXbfDEDu3MZ1LwcYH3PmNXwSzXTqLa9MZ3EfXLrDBn-YD1tDhuAyufTMLwGa7Dd7Y5Tk6acw6wsW3HaLXh_v55CmbPT9OJ3ezzPKCdJmtRc2kyAlrKgsUVCVYoQizzBYMpLI5y1UuVWVVrkRdVU1TV8ArUtZNDorzIbo99E1j3_u0t964aGG9Ni34PuqSqFIoxVQib_4kWSEll0z8D1JJKOf7jte_wJXvQ5vO1bSURRpKWILGB8gGH2OARm9D-m3YaUr0XjWdVNN71fRBtVRxdahwAPCD5pKm7BfVc5Nz</recordid><startdate>20021001</startdate><enddate>20021001</enddate><creator>Cavalier, L.</creator><creator>Ja-Yong Koo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20021001</creationdate><title>Poisson intensity estimation for tomographic data using a wavelet shrinkage approach</title><author>Cavalier, L. ; Ja-Yong Koo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-cd4d254602fbce1e7b428702c2c82e57c6267657bc7674dbbffdbe3b09df6e733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Adaptive estimation</topic><topic>Adaptive systems</topic><topic>Convergence</topic><topic>Convergence of numerical methods</topic><topic>Data reduction</topic><topic>Density</topic><topic>Emission</topic><topic>Estimating techniques</topic><topic>Estimators</topic><topic>Inverse problems</topic><topic>Linear programming</topic><topic>Mathematical models</topic><topic>Minimax methods</topic><topic>Minimax technique</topic><topic>Nonlinear programming</topic><topic>Optimal systems</topic><topic>Optimization</topic><topic>Poisson distribution</topic><topic>Positron emission tomography</topic><topic>Random processes</topic><topic>Stochastic processes</topic><topic>Tomography</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cavalier, L.</creatorcontrib><creatorcontrib>Ja-Yong Koo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cavalier, L.</au><au>Ja-Yong Koo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Poisson intensity estimation for tomographic data using a wavelet shrinkage approach</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2002-10-01</date><risdate>2002</risdate><volume>48</volume><issue>10</issue><spage>2794</spage><epage>2802</epage><pages>2794-2802</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>We consider a two-dimensional (2-D) problem of positron-emission tomography (PET) where the random mechanism of the generation of the tomographic data is modeled by Poisson processes. The goal is to estimate the intensity function which corresponds to emission density. Using the wavelet-vaguelette decomposition (WVD), we propose an estimator based on thresholding of empirical vaguelette coefficients which attains the minimax rates of convergence on Besov function classes. Furthermore, we construct an adaptive estimator which attains the optimal rate of convergence up to a logarithmic term.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2002.802632</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2002-10, Vol.48 (10), p.2794-2802
issn 0018-9448
1557-9654
language eng
recordid cdi_proquest_miscellaneous_907947727
source IEEE Xplore
subjects Adaptive estimation
Adaptive systems
Convergence
Convergence of numerical methods
Data reduction
Density
Emission
Estimating techniques
Estimators
Inverse problems
Linear programming
Mathematical models
Minimax methods
Minimax technique
Nonlinear programming
Optimal systems
Optimization
Poisson distribution
Positron emission tomography
Random processes
Stochastic processes
Tomography
Wavelet transforms
title Poisson intensity estimation for tomographic data using a wavelet shrinkage approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T19%3A35%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Poisson%20intensity%20estimation%20for%20tomographic%20data%20using%20a%20wavelet%20shrinkage%20approach&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Cavalier,%20L.&rft.date=2002-10-01&rft.volume=48&rft.issue=10&rft.spage=2794&rft.epage=2802&rft.pages=2794-2802&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2002.802632&rft_dat=%3Cproquest_RIE%3E639754%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195872702&rft_id=info:pmid/&rft_ieee_id=1035132&rfr_iscdi=true