Poisson intensity estimation for tomographic data using a wavelet shrinkage approach

We consider a two-dimensional (2-D) problem of positron-emission tomography (PET) where the random mechanism of the generation of the tomographic data is modeled by Poisson processes. The goal is to estimate the intensity function which corresponds to emission density. Using the wavelet-vaguelette d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2002-10, Vol.48 (10), p.2794-2802
Hauptverfasser: Cavalier, L., Ja-Yong Koo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a two-dimensional (2-D) problem of positron-emission tomography (PET) where the random mechanism of the generation of the tomographic data is modeled by Poisson processes. The goal is to estimate the intensity function which corresponds to emission density. Using the wavelet-vaguelette decomposition (WVD), we propose an estimator based on thresholding of empirical vaguelette coefficients which attains the minimax rates of convergence on Besov function classes. Furthermore, we construct an adaptive estimator which attains the optimal rate of convergence up to a logarithmic term.
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2002.802632