Optimal control of a class of fractional heat diffusion systems
In this paper, a solution procedure for a class of optimal control problems involving distributed parameter systems described by a generalized, fractional-order heat equation is presented. The first step in the proposed procedure is to represent the original fractional distributed parameter model as...
Gespeichert in:
Veröffentlicht in: | Nonlinear dynamics 2010-10, Vol.62 (1-2), p.39-51 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, a solution procedure for a class of optimal control problems involving distributed parameter systems described by a generalized, fractional-order heat equation is presented. The first step in the proposed procedure is to represent the original fractional distributed parameter model as an equivalent system of fractional-order ordinary differential equations. In the second step, the necessity for solving fractional Euler–Lagrange equations is avoided completely by suitable transformation of the obtained model to a classical, although infinite-dimensional, state-space form. It is shown, however, that relatively small number of state variables are sufficient for accurate computations. The main feature of the proposed approach is that results of the classical optimal control theory can be used directly. In particular, the well-known “linear-quadratic” (LQR) and “Bang-Bang” regulators can be designed. The proposed procedure is illustrated by a numerical example. |
---|---|
ISSN: | 0924-090X 1573-269X |
DOI: | 10.1007/s11071-010-9697-3 |