Synthesis of thermally evaporated ZnSe thin film at room temperature
Zinc selenide (ZnSe) thin film on glass substrates were prepared by thermal evaporation under high vacuum using the quasi-closed volume technique at room temperature (300 ± 2 K). The deposited ZnSe properties were assessed via X-ray diffraction, atomic force microscope (AFM), UV-Vis specrophotometry...
Gespeichert in:
Veröffentlicht in: | Thin solid films 2011-07, Vol.519 (18), p.5971-5977 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Zinc selenide (ZnSe) thin film on glass substrates were prepared by thermal evaporation under high vacuum using the quasi-closed volume technique at room temperature (300
±
2
K). The deposited ZnSe properties were assessed via X-ray diffraction, atomic force microscope (AFM), UV-Vis specrophotometry, Raman spectroscopy, photo-luminescence, Fourier transform infrared spectroscopy (FT-IR) and spectroscopic ellipsometry. The X-ray diffraction patterns of the film exhibited reflection corresponding to the cubic (111) phase (2θ
=
27.20°). This analysis indicated that the sample is polycrystalline and have cubic (Zinc blende) structure. The crystallites were preferentially oriented with the (111) planes parallel to the substrates. The AFM images showed that the ZnSe films have smooth morphology with roughness 6.74
nm. The transmittance spectrum revealed a high transmission of 89% in the infrared region (≥
600
nm) and a low transmission of 40% at 450
nm. The maximum transmission of 89.6% was observed at 640
nm. Optical band-gap was calculated from the transmission data of specrophotometry, photo-luminescence and ellipsometry and was 2.76, 2.74 and 2.82
eV respectively. Raman spectroscopic studies revealed two longitudinal optical phonon modes at 252
cm
-1 and 500
cm
-1. In photoluminescence study, the luminescence peaks was observed at 452
nm corresponding to band to band emission. FT-IR study illustrated the existence of Zn-Se bonding in ZnSe thin film. The optical constants were calculated using spectroscopic ellipsometry and were determined from the best fit ellipsometric data in the wavelength regime of interest from 370–1000
nm. These results manifested excellent room temperature ZnSe synthesis and characteristics for opto-electronics technologies. |
---|---|
ISSN: | 0040-6090 1879-2731 |
DOI: | 10.1016/j.tsf.2011.03.045 |