CAD/CAM-based force controller using a neural network-based effective stiffness estimator

In industries manufacturing metallic molds, various NC machine tools are used. We have already proposed a desktop NC machine tool with compliance control capability to automatically cope with the finishing process of LED lens molds. The NC machine tool has the ability to control the polishing force...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Artificial life and robotics 2010-08, Vol.15 (1), p.101-105
Hauptverfasser: Nagata, Fusaomi, Mizobuchi, Takanori, Hase, Tetsuo, Haga, Zenku, Watanabe, Keigo, Habib, Maki K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In industries manufacturing metallic molds, various NC machine tools are used. We have already proposed a desktop NC machine tool with compliance control capability to automatically cope with the finishing process of LED lens molds. The NC machine tool has the ability to control the polishing force acting between an abrasive tool and a work piece. The force control method is called impedance model force control. The most effective gain is the desired damping of the impedance model. Ideally, the desired damping is calculated from the critical damping condition after considering the effective stiffness in the force control system. However, there is a problem in that the effective stiffness of the NC machine tool has undesirable nonlinearity. The nonlinearity has a bad influence on the force control stability. In this article, a fine tuning method of the desired damping is considered using neural networks. The neural networks acquire the nonlinearity of effective stiffness. The promise is evaluated through an experiment.
ISSN:1433-5298
1614-7456
DOI:10.1007/s10015-010-0776-9