Precise eye localization using HOG descriptors

In this paper, we present a novel algorithm for precise eye detection. First, a couple of AdaBoost classifiers trained with Haar-like features are used to preselect possible eye locations. Then, a Support Vector Machine machine that uses Histograms of Oriented Gradients descriptors is used to obtain...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Machine vision and applications 2011-05, Vol.22 (3), p.471-480
Hauptverfasser: Monzo, David, Albiol, Alberto, Sastre, Jorge, Albiol, Antonio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we present a novel algorithm for precise eye detection. First, a couple of AdaBoost classifiers trained with Haar-like features are used to preselect possible eye locations. Then, a Support Vector Machine machine that uses Histograms of Oriented Gradients descriptors is used to obtain the best pair of eyes among all possible combinations of preselected eyes. Finally, we compare the eye detection results with three state-of-the-art works and a commercial software. The results show that our algorithm achieves the highest accuracy on the FERET and FRGCv1 databases, which is the most complete comparative presented so far.
ISSN:0932-8092
1432-1769
DOI:10.1007/s00138-010-0273-0