Precise eye localization using HOG descriptors
In this paper, we present a novel algorithm for precise eye detection. First, a couple of AdaBoost classifiers trained with Haar-like features are used to preselect possible eye locations. Then, a Support Vector Machine machine that uses Histograms of Oriented Gradients descriptors is used to obtain...
Gespeichert in:
Veröffentlicht in: | Machine vision and applications 2011-05, Vol.22 (3), p.471-480 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we present a novel algorithm for precise eye detection. First, a couple of AdaBoost classifiers trained with Haar-like features are used to preselect possible eye locations. Then, a Support Vector Machine machine that uses Histograms of Oriented Gradients descriptors is used to obtain the best pair of eyes among all possible combinations of preselected eyes. Finally, we compare the eye detection results with three state-of-the-art works and a commercial software. The results show that our algorithm achieves the highest accuracy on the FERET and FRGCv1 databases, which is the most complete comparative presented so far. |
---|---|
ISSN: | 0932-8092 1432-1769 |
DOI: | 10.1007/s00138-010-0273-0 |