James–Stein shrinkage to improve k-means cluster analysis
We study a general algorithm to improve the accuracy in cluster analysis that employs the James–Stein shrinkage effect in k-means clustering. We shrink the centroids of clusters toward the overall mean of all data using a James–Stein-type adjustment, and then the James–Stein shrinkage estimators act...
Gespeichert in:
Veröffentlicht in: | Computational statistics & data analysis 2010-09, Vol.54 (9), p.2113-2127 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study a general algorithm to improve the accuracy in cluster analysis that employs the James–Stein shrinkage effect in k-means clustering. We shrink the centroids of clusters toward the overall mean of all data using a James–Stein-type adjustment, and then the James–Stein shrinkage estimators act as the new centroids in the next clustering iteration until convergence. We compare the shrinkage results to the traditional k-means method. A Monte Carlo simulation shows that the magnitude of the improvement depends on the within-cluster variance and especially on the effective dimension of the covariance matrix. Using the Rand index, we demonstrate that accuracy increases significantly in simulated data and in a real data example. |
---|---|
ISSN: | 0167-9473 1872-7352 |
DOI: | 10.1016/j.csda.2010.03.018 |