Real solution isolation with multiplicity of zero-dimensional triangular systems

Existing algorithms for isolating real solutions of zero-dimensional polynomial systems do not compute the multiplicities of the solutions. In this paper, we define in a natural way the nmltiplicity of solutions of zero-dimensional triangular polynomial systems and prove that our definition is equiv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Information sciences 2011, Vol.54 (1), p.60-69
Hauptverfasser: Zhang, ZhiHai, Fang, Tian, Xia, BiCan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Existing algorithms for isolating real solutions of zero-dimensional polynomial systems do not compute the multiplicities of the solutions. In this paper, we define in a natural way the nmltiplicity of solutions of zero-dimensional triangular polynomial systems and prove that our definition is equivalent to the classical definition of local (intersection) multiplicity. Then we present an effective and complete algorithm for isolat- ing real solutions with multiplicities of zero-dimensional triangular polynomial systems using our definition, The algorithm is based on interval arithmetic and square-free factorization of polynomials with real algebraic coefficients. The computational results on some examples from the literature are presented.
ISSN:1674-733X
1869-1919
DOI:10.1007/s11432-010-4154-y