Unpaired many-to-many vertex-disjoint path covers of a class of bipartite graphs
Let W n denote any bipartite graph obtained by adding some edges to the n-dimensional hypercube Q n , and let S and T be any two sets of k vertices in different partite sets of W n . In this paper, we show that the graph W n has k vertex-disjoint ( S , T ) -paths containing all vertices of W n if an...
Gespeichert in:
Veröffentlicht in: | Information processing letters 2010-02, Vol.110 (6), p.203-205 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
W
n
denote any bipartite graph obtained by adding some edges to the
n-dimensional hypercube
Q
n
, and let
S and
T be any two sets of
k vertices in different partite sets of
W
n
. In this paper, we show that the graph
W
n
has
k vertex-disjoint
(
S
,
T
)
-paths containing all vertices of
W
n
if and only if
k
=
2
n
−
1
or the graph
W
n
−
(
S
∪
T
)
has a perfect matching. Moreover, if the graph
W
n
−
(
S
∪
T
)
has a perfect matching
M, then the graph
W
n
has
k vertex-disjoint
(
S
,
T
)
-paths containing all vertices of
W
n
and all edges in
M. And some corollaries are given. |
---|---|
ISSN: | 0020-0190 1872-6119 |
DOI: | 10.1016/j.ipl.2009.12.004 |