Unpaired many-to-many vertex-disjoint path covers of a class of bipartite graphs

Let W n denote any bipartite graph obtained by adding some edges to the n-dimensional hypercube Q n , and let S and T be any two sets of k vertices in different partite sets of W n . In this paper, we show that the graph W n has k vertex-disjoint ( S , T ) -paths containing all vertices of W n if an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information processing letters 2010-02, Vol.110 (6), p.203-205
1. Verfasser: Chen, Xie-Bin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let W n denote any bipartite graph obtained by adding some edges to the n-dimensional hypercube Q n , and let S and T be any two sets of k vertices in different partite sets of W n . In this paper, we show that the graph W n has k vertex-disjoint ( S , T ) -paths containing all vertices of W n if and only if k = 2 n − 1 or the graph W n − ( S ∪ T ) has a perfect matching. Moreover, if the graph W n − ( S ∪ T ) has a perfect matching M, then the graph W n has k vertex-disjoint ( S , T ) -paths containing all vertices of W n and all edges in M. And some corollaries are given.
ISSN:0020-0190
1872-6119
DOI:10.1016/j.ipl.2009.12.004