Combined application of Monte Carlo method and neural networks to simulate qualitative prompt gamma neutron activation analysis

Prompt gamma spectrum produced by thermal neutron absorption and fast neutron inelastic scattering is simulated using Monte Carlo code MCNP4C. The simulated spectrum is analyzed with artificial neural network techniques. The neural network in our study is trained based on back-propagation algorithm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of radioanalytical and nuclear chemistry 2010-02, Vol.283 (2), p.403-407
Hauptverfasser: Doostmohammadi, V., Sardari, D., Nasrabadi, A. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 407
container_issue 2
container_start_page 403
container_title Journal of radioanalytical and nuclear chemistry
container_volume 283
creator Doostmohammadi, V.
Sardari, D.
Nasrabadi, A. M.
description Prompt gamma spectrum produced by thermal neutron absorption and fast neutron inelastic scattering is simulated using Monte Carlo code MCNP4C. The simulated spectrum is analyzed with artificial neural network techniques. The neural network in our study is trained based on back-propagation algorithm with 138 gamma ray spectra. Elements existing in the 20 different substances are specified. The ANN could identify elements correctly in 96% of input cases.
doi_str_mv 10.1007/s10967-009-0413-z
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_907934077</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A363687048</galeid><sourcerecordid>A363687048</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-4319e377b62d2b87e1866e7de8589e5051dd606a4f6e35c04542282de7ad8abb3</originalsourceid><addsrcrecordid>eNp9kT1v1TAUhi0EEpfCD2DzBktafyS2M1ZXUJBascBsnSQnFxfHTm0H1C78dXwV5srDkezneW35JeQ9Z5ecMX2VOeuVbhjrG9Zy2Ty9IAfeGdMIbdhLcmBCqqbTkr8mb3K-ZxU0Rh7I32NcBhdworCu3o1QXAw0zvQuhoL0CMlHumD5GSsRJhpwS-DrKH9i-pVpiTS7ZfNQ4YcNvCs14TfSNcVlLfQEywJnqaQaC2M922-AAP4xu_yWvJrBZ3z3f16QH58_fT9-aW6_3Xw9Xt82o-xFaVrJe5RaD0pMYjAauVEK9YSmMz12rOPTpJiCdlYou5G1XSuEERNqmAwMg7wgH_bc-rCHDXOxi8sjeg8B45Ztz3QvW6Z1JT8-S3KtBBcdM6yilzt6Ao_WhTmWBGNdEy5ujAFnV_evpZLKaNaaKvBdGFPMOeFs1-QWSI-WM3vu0e492lqPPfdon6ojdidXNpww2fu4pfp9-RnpHyjYouw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762125080</pqid></control><display><type>article</type><title>Combined application of Monte Carlo method and neural networks to simulate qualitative prompt gamma neutron activation analysis</title><source>Springer Nature - Complete Springer Journals</source><creator>Doostmohammadi, V. ; Sardari, D. ; Nasrabadi, A. M.</creator><creatorcontrib>Doostmohammadi, V. ; Sardari, D. ; Nasrabadi, A. M.</creatorcontrib><description>Prompt gamma spectrum produced by thermal neutron absorption and fast neutron inelastic scattering is simulated using Monte Carlo code MCNP4C. The simulated spectrum is analyzed with artificial neural network techniques. The neural network in our study is trained based on back-propagation algorithm with 138 gamma ray spectra. Elements existing in the 20 different substances are specified. The ANN could identify elements correctly in 96% of input cases.</description><identifier>ISSN: 0236-5731</identifier><identifier>EISSN: 1588-2780</identifier><identifier>DOI: 10.1007/s10967-009-0413-z</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Chemistry ; Chemistry and Materials Science ; Computer simulation ; Diagnostic Radiology ; Fast neutrons ; Gamma ray spectra ; Gamma rays ; Hadrons ; Heavy Ions ; Inelastic scattering ; Inorganic Chemistry ; Learning theory ; Methods ; Monte Carlo method ; Monte Carlo methods ; Neural networks ; Nuclear Chemistry ; Nuclear Physics ; Physical Chemistry ; Technology application</subject><ispartof>Journal of radioanalytical and nuclear chemistry, 2010-02, Vol.283 (2), p.403-407</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2009</rights><rights>COPYRIGHT 2010 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-4319e377b62d2b87e1866e7de8589e5051dd606a4f6e35c04542282de7ad8abb3</citedby><cites>FETCH-LOGICAL-c392t-4319e377b62d2b87e1866e7de8589e5051dd606a4f6e35c04542282de7ad8abb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10967-009-0413-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10967-009-0413-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Doostmohammadi, V.</creatorcontrib><creatorcontrib>Sardari, D.</creatorcontrib><creatorcontrib>Nasrabadi, A. M.</creatorcontrib><title>Combined application of Monte Carlo method and neural networks to simulate qualitative prompt gamma neutron activation analysis</title><title>Journal of radioanalytical and nuclear chemistry</title><addtitle>J Radioanal Nucl Chem</addtitle><description>Prompt gamma spectrum produced by thermal neutron absorption and fast neutron inelastic scattering is simulated using Monte Carlo code MCNP4C. The simulated spectrum is analyzed with artificial neural network techniques. The neural network in our study is trained based on back-propagation algorithm with 138 gamma ray spectra. Elements existing in the 20 different substances are specified. The ANN could identify elements correctly in 96% of input cases.</description><subject>Algorithms</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Computer simulation</subject><subject>Diagnostic Radiology</subject><subject>Fast neutrons</subject><subject>Gamma ray spectra</subject><subject>Gamma rays</subject><subject>Hadrons</subject><subject>Heavy Ions</subject><subject>Inelastic scattering</subject><subject>Inorganic Chemistry</subject><subject>Learning theory</subject><subject>Methods</subject><subject>Monte Carlo method</subject><subject>Monte Carlo methods</subject><subject>Neural networks</subject><subject>Nuclear Chemistry</subject><subject>Nuclear Physics</subject><subject>Physical Chemistry</subject><subject>Technology application</subject><issn>0236-5731</issn><issn>1588-2780</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kT1v1TAUhi0EEpfCD2DzBktafyS2M1ZXUJBascBsnSQnFxfHTm0H1C78dXwV5srDkezneW35JeQ9Z5ecMX2VOeuVbhjrG9Zy2Ty9IAfeGdMIbdhLcmBCqqbTkr8mb3K-ZxU0Rh7I32NcBhdworCu3o1QXAw0zvQuhoL0CMlHumD5GSsRJhpwS-DrKH9i-pVpiTS7ZfNQ4YcNvCs14TfSNcVlLfQEywJnqaQaC2M922-AAP4xu_yWvJrBZ3z3f16QH58_fT9-aW6_3Xw9Xt82o-xFaVrJe5RaD0pMYjAauVEK9YSmMz12rOPTpJiCdlYou5G1XSuEERNqmAwMg7wgH_bc-rCHDXOxi8sjeg8B45Ztz3QvW6Z1JT8-S3KtBBcdM6yilzt6Ao_WhTmWBGNdEy5ujAFnV_evpZLKaNaaKvBdGFPMOeFs1-QWSI-WM3vu0e492lqPPfdon6ojdidXNpww2fu4pfp9-RnpHyjYouw</recordid><startdate>20100201</startdate><enddate>20100201</enddate><creator>Doostmohammadi, V.</creator><creator>Sardari, D.</creator><creator>Nasrabadi, A. M.</creator><general>Springer Netherlands</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7QO</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20100201</creationdate><title>Combined application of Monte Carlo method and neural networks to simulate qualitative prompt gamma neutron activation analysis</title><author>Doostmohammadi, V. ; Sardari, D. ; Nasrabadi, A. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-4319e377b62d2b87e1866e7de8589e5051dd606a4f6e35c04542282de7ad8abb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Computer simulation</topic><topic>Diagnostic Radiology</topic><topic>Fast neutrons</topic><topic>Gamma ray spectra</topic><topic>Gamma rays</topic><topic>Hadrons</topic><topic>Heavy Ions</topic><topic>Inelastic scattering</topic><topic>Inorganic Chemistry</topic><topic>Learning theory</topic><topic>Methods</topic><topic>Monte Carlo method</topic><topic>Monte Carlo methods</topic><topic>Neural networks</topic><topic>Nuclear Chemistry</topic><topic>Nuclear Physics</topic><topic>Physical Chemistry</topic><topic>Technology application</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Doostmohammadi, V.</creatorcontrib><creatorcontrib>Sardari, D.</creatorcontrib><creatorcontrib>Nasrabadi, A. M.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology Research Abstracts</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of radioanalytical and nuclear chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Doostmohammadi, V.</au><au>Sardari, D.</au><au>Nasrabadi, A. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combined application of Monte Carlo method and neural networks to simulate qualitative prompt gamma neutron activation analysis</atitle><jtitle>Journal of radioanalytical and nuclear chemistry</jtitle><stitle>J Radioanal Nucl Chem</stitle><date>2010-02-01</date><risdate>2010</risdate><volume>283</volume><issue>2</issue><spage>403</spage><epage>407</epage><pages>403-407</pages><issn>0236-5731</issn><eissn>1588-2780</eissn><abstract>Prompt gamma spectrum produced by thermal neutron absorption and fast neutron inelastic scattering is simulated using Monte Carlo code MCNP4C. The simulated spectrum is analyzed with artificial neural network techniques. The neural network in our study is trained based on back-propagation algorithm with 138 gamma ray spectra. Elements existing in the 20 different substances are specified. The ANN could identify elements correctly in 96% of input cases.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10967-009-0413-z</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0236-5731
ispartof Journal of radioanalytical and nuclear chemistry, 2010-02, Vol.283 (2), p.403-407
issn 0236-5731
1588-2780
language eng
recordid cdi_proquest_miscellaneous_907934077
source Springer Nature - Complete Springer Journals
subjects Algorithms
Chemistry
Chemistry and Materials Science
Computer simulation
Diagnostic Radiology
Fast neutrons
Gamma ray spectra
Gamma rays
Hadrons
Heavy Ions
Inelastic scattering
Inorganic Chemistry
Learning theory
Methods
Monte Carlo method
Monte Carlo methods
Neural networks
Nuclear Chemistry
Nuclear Physics
Physical Chemistry
Technology application
title Combined application of Monte Carlo method and neural networks to simulate qualitative prompt gamma neutron activation analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T21%3A35%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combined%20application%20of%20Monte%20Carlo%20method%20and%20neural%20networks%20to%20simulate%20qualitative%20prompt%20gamma%20neutron%20activation%20analysis&rft.jtitle=Journal%20of%20radioanalytical%20and%20nuclear%20chemistry&rft.au=Doostmohammadi,%20V.&rft.date=2010-02-01&rft.volume=283&rft.issue=2&rft.spage=403&rft.epage=407&rft.pages=403-407&rft.issn=0236-5731&rft.eissn=1588-2780&rft_id=info:doi/10.1007/s10967-009-0413-z&rft_dat=%3Cgale_proqu%3EA363687048%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1762125080&rft_id=info:pmid/&rft_galeid=A363687048&rfr_iscdi=true