Combined application of Monte Carlo method and neural networks to simulate qualitative prompt gamma neutron activation analysis
Prompt gamma spectrum produced by thermal neutron absorption and fast neutron inelastic scattering is simulated using Monte Carlo code MCNP4C. The simulated spectrum is analyzed with artificial neural network techniques. The neural network in our study is trained based on back-propagation algorithm...
Gespeichert in:
Veröffentlicht in: | Journal of radioanalytical and nuclear chemistry 2010-02, Vol.283 (2), p.403-407 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Prompt gamma spectrum produced by thermal neutron absorption and fast neutron inelastic scattering is simulated using Monte Carlo code MCNP4C. The simulated spectrum is analyzed with artificial neural network techniques. The neural network in our study is trained based on back-propagation algorithm with 138 gamma ray spectra. Elements existing in the 20 different substances are specified. The ANN could identify elements correctly in 96% of input cases. |
---|---|
ISSN: | 0236-5731 1588-2780 |
DOI: | 10.1007/s10967-009-0413-z |