Acetalisation of bio-glycerol with acetone to produce solketal over sulfonic mesostructured silicas

Sulfonic acid-functionalized mesostructured silicas have demonstrated excellent catalytic behaviour in the acetalisation of glycerol with acetone to yield 2,2-dimethyl-1,3-dioxolane-4-methanol, also known as solketal. This molecule constitutes an excellent compound for the formulation of gasoline, d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Green chemistry : an international journal and green chemistry resource : GC 2010-01, Vol.12 (5), p.899-907
Hauptverfasser: VICENTE, Gemma, MELERO, Juan A, MORALES, Gabriel, PANIAGUA, Marta, MARTIN, Eric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sulfonic acid-functionalized mesostructured silicas have demonstrated excellent catalytic behaviour in the acetalisation of glycerol with acetone to yield 2,2-dimethyl-1,3-dioxolane-4-methanol, also known as solketal. This molecule constitutes an excellent compound for the formulation of gasoline, diesel and biodiesel fuels. The activity achieved with arenesulfonic acid-functionalized silica is comparable to that displayed by Amberlyst-15. Optimal production of solketal over arenesulfonic acid mesostructured silica has been established for a reaction system consisting of three consecutive 2-step batches (30 min under reflux and an evaporation step under vacuum), and using a 6/1 acetone/glycerol molar ratio. The use of lower grades of glycerol, such as technical (purity of 91.6 wt%) and crude (85.8 wt%) glycerol, has also provided high conversions of glycerol over sulfonic acid-modified heterogeneous catalysts (84% and 81%, respectively). For refined and technical glycerol the catalysts have been reused, without any regeneration treatment, up to three times, keeping the high initial activity. However, the high sodium content in crude glycerol deactivates the sulfonic acid sites by cation exchange. This deactivation is readily reversed by simple acidification of the catalyst after reaction.
ISSN:1463-9262
1463-9270
DOI:10.1039/b923681c