A microwire sensor for rapid detection of Escherichia coli K-12 in fresh produce

A rapid immunofluorescence method for foodborne pathogens in food systems using microwire sensor coupled with high frequency alternating current was developed. The method was intended to enrich and quantify E. coli cells internalized in baby spinach leaves. The targeted bacterial cells in the sample...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Innovative food science & emerging technologies 2011-10, Vol.12 (4), p.617-622
Hauptverfasser: Kim, Sungkyun, Lu, Lin, Chung, Jae-Hyun, Lee, Kyonghoon, Li, Yong, Jun, Soojin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A rapid immunofluorescence method for foodborne pathogens in food systems using microwire sensor coupled with high frequency alternating current was developed. The method was intended to enrich and quantify E. coli cells internalized in baby spinach leaves. The targeted bacterial cells in the sample solution were captured on microwires in a diameter of 25 μm, and were bound to fluorescein isothiocyanate (FITC) labeled polyclonal E. coli antibodies. Fluorescent images of the FITC antibodies were obtained using a fluorescence microscope equipped with a charge-coupled-device (CCD) camera, and the fluorescent intensity (FI) was quantified through image processing. The capture of E. coli K-12 in PBS buffer was optimized when the electric field was generated at the frequency of 3 MHz and 20 Vpp with bacterial concentration of 10 7 CFU/mL. The detection limit of our sensing device was determined to be 10 3 CFU/mL. Field emission scanning electron microscopy (FESEM) was used to validate and visualize E. coli cells captured on the tip surface. The sensitivity and specificity of the developed sensor has been successfully validated by testing E. coli internalized in baby spinach leaves. The immunofluorescence detection has been completed within 15 min. Moreover, it was found that the enrichment process of E. coli cells using the dielectrophoretic force was rarely affected by food particles, which proved the sensing selectivity. The developed sensor is expected to meet the steady demand for a simple, rapid, highly sensitive detection approach to quantify the targeted microbes in food systems. There has been an increase in the number of foodborne illnesses linked to the consumption of fresh and minimally processed fruits and vegetables. Some E.coli strains such as E.coli O 157:H7, can cause a variety of diseases, including diarrhea, urinary tract infections, respiratory diseases, meningitis and more. In general, consumers wash the fresh produces under cold running tap water to remove any lingering dirt on the surface of the produces before eating or preparing. However, how do the consumers know if there is any possible pathogen hiding inside of the fresh produce after rinsing? It was reported from many researchers that, the E.coli internalization, which may occur when fresh produces intake E. coli containing water or manure from the soil, would be a main cause of the foodborne illness outbreak. To ensure the safety of drinking water, E.coli concentration cannot be high
ISSN:1466-8564
1878-5522
DOI:10.1016/j.ifset.2011.06.006