Fasting of 3-day-old chicks leads to changes in histone H3 methylation status

Abstract Unfavorable nutritional conditions during early developmental periods may cause neuronal network remodeling in the hypothalamus, which influences subsequent adaptability to those same stressful conditions. Alterations in hypothalamic plasticity as a result of neuronal remodeling are achieve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physiology & behavior 2012-01, Vol.105 (2), p.276-282
Hauptverfasser: Xu, Pingwen, Denbow, Cynthia J, Meiri, Noam, Denbow, D. Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Unfavorable nutritional conditions during early developmental periods may cause neuronal network remodeling in the hypothalamus, which influences subsequent adaptability to those same stressful conditions. Alterations in hypothalamic plasticity as a result of neuronal remodeling are achieved by variations in the repertoire of proteins expressed via gene transcriptional activation or repression, both of which are modulated by histone methylation status. This study demonstrates that fasting had a stimulatory effect on dimethylation and trimethylation of histone 3 at lysine 27 (H3K27) in preoptic/anterior hypothalamus (PO/AH) of 3-day-old chicks. The expression of enhancer of zeste 2 (EZH2), a H3K27-specific histone methyltransferase (HMT), was significantly increased by fasting in the paraventricular nucleus (PVN) and PO/AH, which is consistent with the upregulation of H3K27 dimethylation and trimethylation. Furthermore, in the PVN, corticotrophin-releasing hormone (CRH) mRNA expression was significantly inhibited, while mRNA expressions of thyrotropin-releasing hormone (TRH) and type 2 deiodinase (D2) were significantly stimulated by fasting. These findings highlight the potential role of H3K27 methylation status in early feed stress responses in chicks and may be indicative of an epigenetic mechanism for later adaptation to feed intake stress.
ISSN:0031-9384
1873-507X
DOI:10.1016/j.physbeh.2011.06.023