Species dependence of the redox potential of the primary electron donor p700 in photosystem I of oxygenic photosynthetic organisms revealed by spectroelectrochemistry

The redox potential of the primary electron donor P700, E(m)(P700/P700(+)), of Photosystem I (PSI) has been determined for 10 oxygenic photosynthesis organisms, ranging from cyanobacteria, red algae, green algae to higher plants, by spectroelectrochemistry with an optically transparent thin-layer el...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant and cell physiology 2011-05, Vol.52 (5), p.815-823
Hauptverfasser: Nakamura, Akimasa, Suzawa, Tomoyuki, Kato, Yuki, Watanabe, Tadashi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The redox potential of the primary electron donor P700, E(m)(P700/P700(+)), of Photosystem I (PSI) has been determined for 10 oxygenic photosynthesis organisms, ranging from cyanobacteria, red algae, green algae to higher plants, by spectroelectrochemistry with an optically transparent thin-layer electrode (OTTLE) cell to elucidate the scattering by as much as 150 mV in reported values of E(m)(P700/P700(+)). The E(m)(P700/P700(+)) values determined within error ranges of ± 1-4 mV exhibited a significant species dependence, with a span >70 mV, from +398 to +470 mV vs. the standard hydrogen electrode (SHE). The E(m)(P700/P700(+)) value appears to change systematically in going from cyanobacteria and primitive eukaryotic red algae, then to green algae and higher plants. From an evolutionary point of view, this result suggests that the species believed to appear later in evolution of photosynthetic organisms exhibit higher values of E(m)(P700/P700(+)). Further, the species dependence of E(m)(P700/P700(+)) seems to originate in the species-dependent redox potentials of soluble metalloproteins, Cyt c(6) and plastocyanin, which re-reduce the oxidized P700 in the electron transfer chain.
ISSN:0032-0781
1471-9053
DOI:10.1093/pcp/pcr034