Repression of Vascular Endothelial Growth Factor Expression by the Runt-Related Transcription Factor 1 in Acute Myeloid Leukemia

VEGFA is considered one of the most important regulators of tumor-associated angiogenesis in cancer. In acute myeloid leukemia (AML) VEGFA is an independent prognostic factor for reduced overall and relapse-free survival. Transcriptional activation of the VEGFA promoter, a core mechanism for VEGFA r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer research (Chicago, Ill.) Ill.), 2011-04, Vol.71 (7), p.2761-2771
Hauptverfasser: TER ELST, Arja, BIN MA, SCHERPEN, Frank J. G, DE JONGE, Hendrik J. M, DOUWES, Jenny, WIERENGA, Albertus T. J, SCHURINGA, Jan Jacob, KAMPS, Willem A, DE BONT, Eveline S. J. M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:VEGFA is considered one of the most important regulators of tumor-associated angiogenesis in cancer. In acute myeloid leukemia (AML) VEGFA is an independent prognostic factor for reduced overall and relapse-free survival. Transcriptional activation of the VEGFA promoter, a core mechanism for VEGFA regulation, has not been fully elucidated. We found a significant (P < 0.0001) inverse correlation between expression of VEGFA and AML1/RUNX1 in a large set of gene expression array data. Strikingly, highest VEGFA levels were demonstrated in AML blasts containing a t(8;21) translocation, which involves the AML1/RUNX1 protein (AML1/ETO). Overexpression of AML1/RUNX1 led to downregulation of VEGFA expression, whereas blocking of AML1/RUNX1 with siRNAs resulted in increased VEGFA expression. Cotransfection of AML1/RUNX1 and VEGFA promoter luciferase promoter constructs resulted in a decrease in VEGFA promoter activity. ChIP analysis shows a direct binding of AML1/RUNX1 to the promoter of VEGFA on three AML1/RUNX1 binding sites. Silencing of AML1/ETO caused a decrease in VEGFA mRNA expression and a decrease in secreted VEGFA protein levels in AML1/ETO-positive Kasumi-1 cells. Taken together, these data pinpoint to a model whereby in normal cells AML1/RUNX1 acts as a repressor for VEGFA, while in AML cells VEGFA expression is upregulated due to AML1/RUNX1 aberrations, for example, AML1/ETO. In conclusion, these observations give insight in the regulation of VEGFA at the mRNA level in AML.
ISSN:0008-5472
1538-7445
DOI:10.1158/0008-5472.CAN-10-0402