Birdsong: From behaviour to brain

Although vocal communication is wide-spread in animal kingdom, the use of learned (in contrast to innate) vocalization is very rare. We can find it only in few animal taxa: human, bats, whales and dolphins, elephants, parrots, hummingbirds, and songbirds. There are several parallels between human an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biológia 2010-06, Vol.65 (3), p.379-387
Hauptverfasser: Bosikova, Eva, Kostal, Lubor, Kubikova, Lubica
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Although vocal communication is wide-spread in animal kingdom, the use of learned (in contrast to innate) vocalization is very rare. We can find it only in few animal taxa: human, bats, whales and dolphins, elephants, parrots, hummingbirds, and songbirds. There are several parallels between human and songbird perception and production of vocal signals. Hence, many studies take interest in songbird singing for investigating the neural bases of learning and memory. Brain circuits controlling song learning and maintenance consist of two pathways — a vocal motor pathway responsible for production of learned vocalizations and anterior forebrain pathway responsible for learning and modifying the vocalizations. This review provides an overview of the song organization, its behavioural traits, and neural regulations. The recently expanding area of molecular mapping of the behaviour-driven gene expression in brain represents one of the modern approaches to the study the function of vocal and auditory areas for song learning and maintenance in birds.
ISSN:1336-9563
0006-3088
1336-9563
DOI:10.2478/s11756-010-0047-1