Preparation of arrays of cell spheroids and spheroid-monolayer cocultures within a microfluidic device

This study describes a novel method for generation of an array of three-dimensional (3D) multicellular spheroids within a microchannel in patterned cultures containing one or multiple cell types. This method uses a unique property of a cross-linked albumin coated surface in which the surface can be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of bioscience and bioengineering 2010-11, Vol.110 (5), p.572-576
Hauptverfasser: Okuyama, Tomoaki, Yamazoe, Hironori, Mochizuki, Naoto, Khademhosseini, Ali, Suzuki, Hiroaki, Fukuda, Junji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study describes a novel method for generation of an array of three-dimensional (3D) multicellular spheroids within a microchannel in patterned cultures containing one or multiple cell types. This method uses a unique property of a cross-linked albumin coated surface in which the surface can be switched from non-adhesive to cell adhesive upon electrostatic adsorption of a polycation. Introduction of a solution containing albumin and a cross-linking agent into a microchannel with an array of microwells caused the entire surface, with the exception of the interior of the microwells, to become coated with the cross-linked albumin layer. Cells that were seeded within the microchannel did not adhere to the surface of the microchannel and became entrapped in the microwells. HepG2 cells seeded in the microwells formed 3D spheroids with controlled sizes and shapes depending upon the dimensions of the microwells. When the albumin coated surface was subsequently exposed to an aqueous solution containing poly(ethyleneimine) (PEI), adhesion of secondary cells, fibroblasts, occurred in the regions surrounding the arrayed spheroids. This coculture system can be coupled with spatially controlled fluids such as gradients and focused flow generators for various biological and tissue engineering applications.
ISSN:1389-1723
1347-4421
DOI:10.1016/j.jbiosc.2010.05.013