Enhancement of tolerance to soft rot disease in the transgenic Chinese cabbage (Brassica rapa L. ssp. pekinensis) inbred line, Kenshin
We developed a transgenic Chinese cabbage ( Brassica rapa L. ssp. pekinensis ) inbred line, Kenshin, with high tolerance to soft rot disease. Tolerance was conferred by expression of N -acyl-homoserine lactonase (AHL-lactonase) in Chinese cabbage through an efficient Agrobacterium -mediated transfor...
Gespeichert in:
Veröffentlicht in: | Plant cell reports 2009-10, Vol.28 (10), p.1581-1591 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We developed a transgenic Chinese cabbage (
Brassica rapa
L. ssp.
pekinensis
) inbred line, Kenshin, with high tolerance to soft rot disease. Tolerance was conferred by expression of
N
-acyl-homoserine lactonase (AHL-lactonase) in Chinese cabbage through an efficient
Agrobacterium
-mediated transformation method. To synthesize and express the AHL-lactonase in Chinese cabbage, the plant was transformed with the
aii
gene (AHL-lactonase gene from
Bacillus
sp. GH02) fused to the PinII signal peptide (protease inhibitor II from potato). Five transgenic lines were selected by growth on hygromycin-containing medium (3.7% transformation efficiency). Southern blot analysis showed that the transgene was stably integrated into the genome. Among these five transgenic lines, single copy number integrations were observed in four lines and a double copy number integration was observed in one transgenic line. Northern blot analysis confirmed that
pin
IISP-
aii
fusion gene was expressed in all the transgenic lines. Soft rot disease tolerance was evaluated at tissue and seedling stage. Transgenic plants showed a significantly enhanced tolerance (2–3-fold) to soft rot disease compared to wild-type plants. Thus, expression of the fusion gene
pin
IISP
-aii
reduces susceptibility to soft rot disease in Chinese cabbage. We conclude that the recombinant AHL-lactonase, encoded by
aii
, can effectively quench bacterial quorum-sensing and prevent bacterial population density-dependent infections. To the best of our knowledge, the present study is the first to demonstrate the transformation of Chinese cabbage inbred line Kenshin, and the first to describe the effect of the fusion gene
pin
IISP-
aii
on enhancement of soft rot disease tolerance. |
---|---|
ISSN: | 0721-7714 1432-203X |
DOI: | 10.1007/s00299-009-0757-4 |