Characterization of polystyrene-binding peptides (PS-tags) for site-specific immobilization of proteins

In this study, we characterized polystyrene-binding peptides (PS-tags) that possess a specific binding affinity for hydrophilic polystyrene (phi-PS) plates. Both the FITC-labeled PS19-1 (RAFIASRRIKRP) and PS19-6 (RIIIRRIRR) peptides showed strong binding affinity for commercially available hydrophil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of bioscience and bioengineering 2010-06, Vol.109 (6), p.583-587
Hauptverfasser: Kumada, Yoichi, Kuroki, Daisuke, Yasui, Hidefumi, Ohse, Takuhito, Kishimoto, Michimasa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, we characterized polystyrene-binding peptides (PS-tags) that possess a specific binding affinity for hydrophilic polystyrene (phi-PS) plates. Both the FITC-labeled PS19-1 (RAFIASRRIKRP) and PS19-6 (RIIIRRIRR) peptides showed strong binding affinity for commercially available hydrophilic, but not hydrophobic, PS plates in the presence of the non-ionic surfactant Tween 20. The dissociation constants ( K d) of the PS19-1 and PS19-6 peptides for the hydrophilic PS-A plate were 169 and 86 nM, respectively, and the K d of both peptides increased with the concentration of NaCl or urea. Based on adsorption yield and residual activity of glutathione S-transferase (GST) after fusion with the PS19-6 peptide or its variants, it was found that the basic amino acid in the PS-tags, i.e., Arg was essential for the strong binding affinity of PS-tags in both the peptide and peptide-fused protein forms The aliphatic amino acids in PS19-6 and PS19-6L, such as Ile or Leu, were also effective. Thus, a series of PS-tags that possess this unusual feature, especially the peptides PS19-6 (RIIIRRIRR) and PS19-6L (RLLLRRLRR), are potential candidate affinity peptide tags for site-specific immobilization of proteins onto hydrophilic PS plates, which show potential as solid supports for protein-based biochips.
ISSN:1389-1723
1347-4421
DOI:10.1016/j.jbiosc.2009.11.005