Neuronal sodium leak channel is responsible for the detection of sodium in the rat median preoptic nucleus

Sodium (Na(+)) ions are of primary importance for hydromineral and cardiovascular homeostasis, and the level of Na(+) in the body fluid compartments [plasma and cerebrospinal fluid (CSF)] is precisely monitored in the hypothalamus. Glial cells seem to play a critical role in the mechanism of Na(+) d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neurophysiology 2011-02, Vol.105 (2), p.650-660
Hauptverfasser: Tremblay, Christina, Berret, Emmanuelle, Henry, Mélaine, Nehmé, Benjamin, Nadeau, Louis, Mouginot, Didier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sodium (Na(+)) ions are of primary importance for hydromineral and cardiovascular homeostasis, and the level of Na(+) in the body fluid compartments [plasma and cerebrospinal fluid (CSF)] is precisely monitored in the hypothalamus. Glial cells seem to play a critical role in the mechanism of Na(+) detection. However, the precise role of neurons in the detection of extracellular Na(+) concentration ([Na(+)](out)) remains unclear. Here we demonstrate that neurons of the median preoptic nucleus (MnPO), a structure in close contact with the CSF, are specific Na(+) sensors. Electrophysiological recordings were performed on dissociated rat MnPO neurons under isotonic [Na(+)] (100 mM NaCl) with local application of hypernatriuric (150, 180 mM NaCl) or hyponatriuric (50 mM NaCl) external solution. The hyper- and hyponatriuric conditions triggered an in- and an outward current, respectively. The reversal potential of the current matched the equilibrium potential of Na(+), indicating that a change in [Na(+)](out) modified the influx of Na(+) in the MnPO neurons. The conductance of the Na(+) current was not affected by either the membrane potential or the [Na(+)](out). Moreover, the channel was highly selective for lithium over guanidinium. Together, these data identified the channel as a Na(+) leak channel. A high correlation between the electrophysiological recordings and immunofluorescent labeling for the Na(X) channel in dissociated MnPO neurons strongly supports this channel as a candidate for the Na(+) leak channel responsible for the Na(+)-sensing ability of rat MnPO neurons. The absence of Na(X) labeling and of a specific current evoked by a change in [Na(+)](out) in mouse MnPO neurons suggests species specificity in the hypothalamus structures participating in central Na(+) detection.
ISSN:0022-3077
1522-1598
DOI:10.1152/jn.00417.2010