The LKB1/AMPK signaling pathway has tumor suppressor activity in acute myeloid leukemia through the repression of mTOR-dependent oncogenic mRNA translation
Finding an effective treatment for acute myeloid leukemia (AML) remains a challenge, and all cellular processes that are deregulated in AML cells should be considered in the design of targeted therapies. We show in our current study that the LKB1/AMPK/TSC tumor suppressor axis is functional in AML a...
Gespeichert in:
Veröffentlicht in: | Blood 2010-11, Vol.116 (20), p.4262-4273 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Finding an effective treatment for acute myeloid leukemia (AML) remains a challenge, and all cellular processes that are deregulated in AML cells should be considered in the design of targeted therapies. We show in our current study that the LKB1/AMPK/TSC tumor suppressor axis is functional in AML and can be activated by the biguanide molecule metformin, resulting in a specific inhibition of mammalian target of rapamycin (mTOR) catalytic activity. This induces a multisite dephosphorylation of the key translation regulator, 4E-BP1, which markedly inhibits the initiation step of mRNA translation. Consequently, metformin reduces the recruitment of mRNA molecules encoding oncogenic proteins to the polysomes, resulting in a strong antileukemic activity against primary AML cells while sparing normal hematopoiesis ex vivo and significantly reducing the growth of AML cells in nude mice. The induction of the LKB1/AMPK tumor-suppressor pathway thus represents a promising new strategy for AML therapy. |
---|---|
ISSN: | 0006-4971 1528-0020 1528-0020 |
DOI: | 10.1182/blood-2010-02-269837 |