A gene-fusion strategy for stoichiometric and co-localized expression of light-gated membrane proteins
Molecular engineering allows stoichiometric and co-localized expression of two optogenetic actuators, spaced by a fluorescent protein and an additional transmembrane helix in a single protein fusion. The method provides modular optogenetic tools for bidirectional membrane potential control or synerg...
Gespeichert in:
Veröffentlicht in: | Nature methods 2011-12, Vol.8 (12), p.1083-1088 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Molecular engineering allows stoichiometric and co-localized expression of two optogenetic actuators, spaced by a fluorescent protein and an additional transmembrane helix in a single protein fusion. The method provides modular optogenetic tools for bidirectional membrane potential control or synergistic effects on neuronal activity.
The precise co-localization and stoichiometric expression of two different light-gated membrane proteins can vastly improve the physiological usefulness of optogenetics for the modulation of cell excitability with light. Here we present a gene-fusion strategy for the stable 1:1 expression of any two microbial rhodopsins in a single polypeptide chain. By joining the excitatory channelrhodopsin-2 with the inhibitory ion pumps halorhodopsin or bacteriorhodopsin, we demonstrate light-regulated quantitative bi-directional control of the membrane potential in HEK293 cells and neurons
in vitro
. We also present synergistic rhodopsin combinations of channelrhodopsin-2 with
Volvox carteri
channelrhodopsin-1 or slow channelrhodopsin-2 mutants, to achieve enhanced spectral or kinetic properties, respectively. Finally, we demonstrate the utility of our fusion strategy to determine ion-turnovers of as yet uncharacterized rhodopsins, exemplified for archaerhodopsin and CatCh, or to correct pump cycles, exemplified for halorhodopsin. |
---|---|
ISSN: | 1548-7091 1548-7105 |
DOI: | 10.1038/nmeth.1766 |