Doped CeO2–LaFeO3 Composite Oxide as an Active Anode for Direct Hydrocarbon-Type Solid Oxide Fuel Cells

Direct utilization of hydrocarbon and other renewable fuels is one of the most important issues concerning solid oxide fuel cells (SOFCs). Mixed ionic and electronic conductors (MIECs) have been explored as anode materials for direct hydrocarbon-type SOFCs. However, electrical conductivity of the mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2011-12, Vol.133 (48), p.19399-19407
Hauptverfasser: Shin, Tae Ho, Ida, Shintaro, Ishihara, Tatsumi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Direct utilization of hydrocarbon and other renewable fuels is one of the most important issues concerning solid oxide fuel cells (SOFCs). Mixed ionic and electronic conductors (MIECs) have been explored as anode materials for direct hydrocarbon-type SOFCs. However, electrical conductivity of the most often reported MIEC oxide electrodes is still not satisfactory. As a result, mixed-conducting oxides with high electrical conductivity and catalytic activity are attracting considerable interest as an alternative anode material for noncoke depositing anodes. In this study, we examine the oxide composite Ce(Mn,Fe)O2–La(Sr)Fe(Mn)O3 for use as an oxide anode in direct hydrocarbon-type SOFCs. High performance was demonstrated for this composite oxide anode in direct hydrocarbon-type SOFCs, showing high maximum power density of approximately 1 W cm–2 at 1073 K when propane and butane were used as fuel. The high power density of the cell results from the high electrical conductivity of the composite oxide in hydrocarbon and the high surface activity in relation to direct hydrocarbon oxidation.
ISSN:0002-7863
1520-5126
DOI:10.1021/ja206278f