Advances in the Synthesis of Homochiral (−)-1-Azafagomine and (+)-5-epi-1-Azafagomine. 1-N-Phenyl Carboxamide Derivatives of both Enantiomers of 1-Azafagomine: Leads for the Synthesis of Active α-Glycosidase Inhibitors
A new expeditious preparation of homochiral (−)-1-azafagomine and (+)-5-epi-1-azafagomine has been devised. Stoodley's diastereoselective cycloaddition of dienes bearing a 2,3,4,6-tetraacetyl glucosyl chiral auxiliary to 4-phenyl-1,2,4-triazole-3,5-dione was merged with Bols's protocol for...
Gespeichert in:
Veröffentlicht in: | Journal of organic chemistry 2011-12, Vol.76 (23), p.9584-9592 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A new expeditious preparation of homochiral (−)-1-azafagomine and (+)-5-epi-1-azafagomine has been devised. Stoodley's diastereoselective cycloaddition of dienes bearing a 2,3,4,6-tetraacetyl glucosyl chiral auxiliary to 4-phenyl-1,2,4-triazole-3,5-dione was merged with Bols's protocol for functionalizing alkenes into molecules bearing a glucosyl framework. Homochiral (+)-5-epi-1-azafagomine was synthetized for the first time. Partial reductive cleavage of the phenyltriazolidinone moiety afforded new homochiral 1-N-phenyl carboxamide derivatives of 1-azafagomine. Both enantiomers of these derivatives were synthetized and tested, displaying a very good enzymatic inhibition toward baker's yeast α-glucosidase. The molecular recognition mechanism of the 1-N-phenyl carboxamide derivative of 1-azafagomine by α-glucosidase from baker's yeast was studied by molecular modeling. The efficient packing of the aromatic ring of the 1-N-phenyl carboxamide moiety into a hydrophobic subsite (pocket) in the enzyme's active site seems to be responsible for the improved binding affinity in relation to underivatized (−)-1-azafagomine and (+)-1-azafagomine. |
---|---|
ISSN: | 0022-3263 1520-6904 |
DOI: | 10.1021/jo201486q |