Protein Intake Does Not Increase Vastus Lateralis Muscle Protein Synthesis during Cycling

This study aimed to investigate the effect of protein ingestion on leg protein turnover and vastus lateralis muscle protein synthesis during bicycle exercise and recovery. Eight healthy males participated in two experiments in which they ingested either a carbohydrate solution (CHO) providing 0.49 g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medicine and science in sports and exercise 2011-09, Vol.43 (9), p.1635-1642
Hauptverfasser: HULSTON, Carl J, WOLSK, Emil, GRØNDAHL, Thomas S, YFANTI, Christina, VAN HALL, Gerrit
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study aimed to investigate the effect of protein ingestion on leg protein turnover and vastus lateralis muscle protein synthesis during bicycle exercise and recovery. Eight healthy males participated in two experiments in which they ingested either a carbohydrate solution (CHO) providing 0.49 g·kg(-1)·h(-1), or a carbohydrate and protein solution (CHO + P) providing 0.49 and 0.16 g·kg(-1)·h(-1), during 3 h of bicycle exercise and 3 h of recovery. Leg protein turnover was determined from stable isotope infusion (l-[ring-C6]phenylalanine), femoral-arterial venous blood sampling, and blood flow measurements. Muscle protein synthesis was calculated from the incorporation of l-[ring-C6]phenylalanine into protein. Consuming protein during exercise increased leg protein synthesis and decreased net leg protein breakdown; however, protein ingestion did not increase protein synthesis within the highly active vastus lateralis muscle (0.029%·h(-1), ± 0.004%·h(-1), and 0.030%·h(-1), ± 0.003%·h(-1), in CHO and CHO + P, respectively; P = 0.88). In contrast, consuming protein, during exercise and recovery, increased postexercise vastus lateralis muscle protein synthesis by 51% ± 22% (0.070%·h(-1), ± 0.003%·h(-1), and 0.105%·h(-1), ± 0.013%·h(-1), in CHO and CHO+P, respectively; P < 0.01). Furthermore, leg protein net balance was negative during recovery with CHO intake, whereas positive leg protein net balance was achieved with CHO+P intake. We conclude that consuming protein during prolonged bicycle exercise does not increase protein synthesis within highly active leg muscles. However, protein intake may have stimulated protein synthesis within less active leg muscles and/or other nonmuscle leg tissue. Finally, protein supplementation, during exercise and recovery, enhanced postexercise muscle protein synthesis and resulted in positive leg protein net balance.
ISSN:0195-9131
1530-0315
DOI:10.1249/MSS.0b013e31821661ab