Electrostatic-field-driven alignment of organic oligomers on ZnO surfaces

We study the physisorption of organic oligomers on the strongly ionic ZnO(1010) surface by using first-principles density-functional theory and nonempirical embedding methods. It turns out that the in-plane variation of the molecule-substrate interaction energy and the bonding dipole in the vertical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2011-09, Vol.107 (14), p.146401-146401, Article 146401
Hauptverfasser: Della Sala, F, Blumstengel, S, Henneberger, F
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the physisorption of organic oligomers on the strongly ionic ZnO(1010) surface by using first-principles density-functional theory and nonempirical embedding methods. It turns out that the in-plane variation of the molecule-substrate interaction energy and the bonding dipole in the vertical direction are linked up by a linear relationship originating from the electrostatic coupling of the molecule with the periodic dipolar electric field generated by the Zn-O surface dimers. Long oligomers with a highly axial π-electron system such as sexiphenyl become well oriented with alignment energies of several 100 meV along rows of a positive electric field, in full agreement with recent experiments. These findings define a new route towards the realization of highly ordered self-assembled arrays of oligomers or polymers on ZnO(1010) and similar surfaces.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.107.146401