Regulation of arterial blood pressure by Akt1-dependent vascular relaxation

Endothelial cell-dependent vascular relaxation plays an important role in the regulation of blood pressure. Here, we show that stimulation of vascular endothelial cells with platelet-derived growth factor (PDGF) results in vascular relaxation through Akt1-dependent activation of endothelial nitric o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular medicine (Berlin, Germany) Germany), 2011-12, Vol.89 (12), p.1253-1260
Hauptverfasser: Ha, Jung Min, Kim, Young Whan, Lee, Dong Hyung, Yun, Sung Ji, Kim, Eun Kyoung, Hye Jin, In, Kim, Ji Hyun, Kim, Chi Dae, Shin, Hwa Kyoung, Bae, Sun Sik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Endothelial cell-dependent vascular relaxation plays an important role in the regulation of blood pressure. Here, we show that stimulation of vascular endothelial cells with platelet-derived growth factor (PDGF) results in vascular relaxation through Akt1-dependent activation of endothelial nitric oxide synthase (eNOS) and nitric oxide (NO) production. Stimulation of both human umbilical artery endothelial cells and abdominal aortic vessels with PDGF induced NO production. PDGF-dependent production of NO was completely abolished by inhibition of phosphatidylinositol 3-kinase with wortmannin (100 nM). Stimulation of aortic vessels with PDGF resulted in the activation of Akt phosphorylation and eNOS phosphorylation: however, eNOS phosphorylation and production of NO were abolished in aortic vessels of mice lacking Akt1. PDGF strongly induced vascular relaxation in the presence of endothelium, and inhibition of NO production by N -nitro- l -arginine-methyl ester completely blocked PDGF-dependent vascular relaxation. In addition, PDGF-dependent relaxation was completely abolished by inhibition of PI3K with wortmannin (100 nM). Furthermore, vessels from Akt1 heterozygotes showed normal relaxation after PDGF stimulation, whereas vessels from Akt1 knockout littermates did not respond to PDGF stimulation. Finally, administration of PDGF (5 ng/ml) significantly lowered blood pressure in Akt1 heterozygotes, whereas a blood pressure-lowering effect was not observed in Akt1 knockout littermates. These results suggest that Akt1 regulates blood pressure through regulation of vascular relaxation by eNOS phosphorylation and subsequent production of NO.
ISSN:0946-2716
1432-1440
DOI:10.1007/s00109-011-0798-3