Water-catalyzed gas-phase hydrogen abstraction reactions of CH3O2 and HO2 with HO2: a computational investigation
The gas-phase hydrogen abstraction reactions of CH(3)O(2) and HO(2) with HO(2) in the presence and absence of a single water molecule have been studied at the CCSD(T)/6-311++G(3d,2p)//B3LYP/6-311G(2d,2p) level of theory. The calculated results show that the process for O(3) formation is much faster...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2011-01, Vol.13 (46), p.20794-20805 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The gas-phase hydrogen abstraction reactions of CH(3)O(2) and HO(2) with HO(2) in the presence and absence of a single water molecule have been studied at the CCSD(T)/6-311++G(3d,2p)//B3LYP/6-311G(2d,2p) level of theory. The calculated results show that the process for O(3) formation is much faster than that for (1)O(2) and (3)O(2) formation in the water-catalyzed CH(3)O(2) + HO(2) reaction. This is different from the results for the non-catalytic reaction of CH(3)O(2) + HO(2), in which almost only the process for (3)O(2) formation takes place. Unlike CH(3)O(2) + HO(2) reaction in which the preferred process is different in the catalytic and non-catalytic conditions, the channel for (3)O(2) formation is the dominant in both catalytic and non-catalytic HO(2) + HO(2) reactions. Furthermore, the calculated total CVT/SCT rate constants for water-catalyzed and non-catalytic title reactions show that the water molecule doesn't contribute to the rate of CH(3)O(2) + HO(2) reaction though the channel for O(3) formation in this water-catalyzed reaction is more kinetically favorable than its non-catalytic process. Meanwhile, the water molecule plays an important positive role in increasing the rate of HO(2) + HO(2) reaction. These results are in good agreement with available experiments. |
---|---|
ISSN: | 1463-9076 1463-9084 |
DOI: | 10.1039/c1cp21563a |