Effects of roughage source and distillers grain concentration on beef cattle finishing performance, carcass characteristics, and in vitro fermentation

Two experiments were conducted to evaluate the effects of wet distillers grains plus solubles (DG) and roughage source on finishing cattle performance, carcass characteristics, and in vitro fermentation. In Exp. 1, crossbred beef steers (n=224, initial BW=349 kg) were used in a randomized complete b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of animal science 2011-08, Vol.89 (8), p.2631-2642
Hauptverfasser: QUINN, M. J, MAY, M. L, DILORENZO, N, PONCE, C. H, SMITH, D. R, PARR, S. L, GALYEAN, M. L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Two experiments were conducted to evaluate the effects of wet distillers grains plus solubles (DG) and roughage source on finishing cattle performance, carcass characteristics, and in vitro fermentation. In Exp. 1, crossbred beef steers (n=224, initial BW=349 kg) were used in a randomized complete block design with a 2 × 3 + 1 factorial arrangement of treatments. Experimental diets were a standard steam-flaked corn (SFC)-based control (no DG and 10% alfalfa hay), and either 15 or 30% DG (DM basis) with roughage sources of alfalfa hay (15-AH and 30-AH), Coastal bermudagrass hay (15-BG and 30-BG), or sorghum silage (15-SS and 30-SS). Within each DG concentration, roughages provided an equivalent percentage of NDF to 7.5% AH. Steers consuming 15% DG had greater (P < 0.04) final BW, ADG, and G:F than those fed 30% DG. Feeding AH as the roughage source with DG resulted in decreased final shrunk BW and ADG (P < 0.02) compared with BG and SS. Feeding SS as the roughage source decreased (P=0.01) G:F relative to BG. Hot carcass weight was greater (P < 0.01) for steers consuming 15 vs. 30% DG, tended to be least for diets with AH as the roughage source (P=0.06), and did not differ for the control vs. the other diets (P=0.86). Control cattle had an increased (P=0.05) proportion of USDA Choice or greater carcasses compared with the average of the other treatments. In Exp. 2, the same 2 × 3 +1 factorial arrangement as in Exp. 1 was used to examine the effects of roughage source and DG on IVDMD, culture fluid osmolality, and gas production kinetics. In vitro DMD tended (P < 0.09) to be greater for BG compared with SS at 6 and 36 h of incubation and was greater for AH vs. the mean of BG and SS at 18 h (P=0.01). Culture fluid osmolality, asymptotic maximal gas production, fractional rate of gas production, and lag time of gas production did not differ among treatments (P > 0.14). Overall, feeding 15% DG in SFC-based diets increased ADG, BW, and HCW relative to 30% DG. In addition, feeding AH tended to decrease ADG, final BW, and HCW relative to the other 2 roughage sources, whereas BG improved G:F over SS. These data suggest that including the smaller amount of DG and BG as the roughage source resulted in improved performance relative to other combinations, and that substituting roughages on the basis of equivalent NDF concentration might not be ideal for optimizing performance when feeding SFC-based finishing diets that contain DG.
ISSN:0021-8812
1525-3163
DOI:10.2527/jas.2010-3563