Active cyamemazine metabolites in patients treated with cyamemazine (Tercian registered ): influence on cerebral dopamine D sub(2) and serotonin 5-HT sub(2A) receptor occupancy as measured by positron emission tomography (PET)

Rationale: Cyamemazine (Tercian registered ) is an antipsychotic agent blocking central dopamine D sub(2) receptors, which induces few extrapyramidal adverse effects, due to a potent antagonistic action at serotonin 5-HT sub(2A) receptors. In vitro studies showed that the desmethyl metabolite of cya...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Psychopharmacology 2011-10, Vol.217 (3), p.315-321
Hauptverfasser: Hode, Yann, Benyamina, Amine, Arbus, Christophe, Reimold, Matthias
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Rationale: Cyamemazine (Tercian registered ) is an antipsychotic agent blocking central dopamine D sub(2) receptors, which induces few extrapyramidal adverse effects, due to a potent antagonistic action at serotonin 5-HT sub(2A) receptors. In vitro studies showed that the desmethyl metabolite of cyamemazine (N-desmethyl cyamemazine) has similar affinity for 5-HT sub(2A) receptors as cyamemazine, whereas its D sub(2) receptor affinity is eight times lower (Benyamina et al. in Eur J Pharmacol 578(2-3):142-147, 2008). Moreover, cyamemazine sulfoxide showed modest affinity for 5-HT sub(2A) receptors. Objectives: The objective of this study is to measure steady-state plasma levels of N-desmethyl cyamemazine and cyamemazine sulfoxide in patients treated with clinically relevant doses of cyamemazine and correlate them with dopamine D sub(2) and serotonin 5-HT sub(2A) receptor occupancies (RO) assessed by positron emission tomography (PET). Methods: Eight patients received Tercian registered 37.5, 75, 150, or 300 mg/day according to their symptoms. Dopamine D sub(2) and serotonin 5-HT sub(2A) RO were assessed at steady-state cyamemazine plasma levels using [ super(11)C]raclopride and [ super(11)C]N-methyl-spiperone , respectively, for PET. Plasma levels of cyamemazine metabolites were determined using a validated high-performance liquid chromatography (PerkinElmer) associated with a mass spectrometry detection (API 365, PE SCIEX). The apparent equilibrium inhibition constant (K sub(i)) was estimated by fitting RO with plasma levels of cyamemazine metabolites at the time of the PET scan. Results: After 6 days of cyamemazine administration, plasma N-desmethyl cyamemazine reached steady-state levels at 2 to 12 times higher than those previously found for cyamemazine (Hode et al. in Psychopharmacology (Berl) 180:377-384, 2005). Plasma levels of N-desmethyl cyamemazine were closely related to striatal D sub(2) RO (r super(2)=0.942) and extrastriatal 5-HT sub(2A) RO (r super(2)=0.901). The estimated K sub(i(app)) value of N-desmethyl cyamemazine for striatal D sub(2) receptors was about fivefold higher than that for extrastriatal 5-HT sub(2A) receptors (48.7 vs. 10.6 nM). Striatal D sub(2) RO increased with the plasma levels of N-desmethyl cyamemazine but remained below 75% even at its highest levels. At steady state, plasma cyamemazine sulfoxide levels were about double those of N-desmethyl cyamemazine. However, these cyamemazine sulfoxide levels should not contribute
ISSN:0033-3158
1432-2072
DOI:10.1007/s00213-011-2289-1