Genome-wide transcriptome and proteome analyses of tobacco psaA and psbA deletion mutants
Photosynthesis in higher land plants is a complex process involving several proteins encoded by both nuclear and chloroplast genomes that require a highly coordinated gene expression. Significant changes in plastid differentiation and biochemical processes are associated with the deletion of chlorop...
Gespeichert in:
Veröffentlicht in: | Plant molecular biology 2011-07, Vol.76 (3-5), p.407-423 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Photosynthesis in higher land plants is a complex process involving several proteins encoded by both nuclear and chloroplast genomes that require a highly coordinated gene expression. Significant changes in plastid differentiation and biochemical processes are associated with the deletion of chloroplast genes. In this study we report the genome-wide responses caused by the deletion of tobacco
psaA
and
psbA
genes coding core components of photosystem I (PSI) and photosystem II (PSII), respectively, generated through a chloroplast genetic engineering approach. Transcriptomic and quantitative proteomic analysis showed the down regulation of specific groups of nuclear and chloroplast genes involved in photosynthesis, energy metabolism and chloroplast biogenesis. Moreover, our data show simultaneous activation of several defense and stress responsive genes including those involved in reactive oxygen species (ROS) scavenging mechanisms. A major finding is the differential transcription of the plastome of deletion mutants: genes known to be transcribed by the plastid encoded polymerase (PEP) were generally down regulated while those transcribed by the nuclear encoded polymerase (NEP) were up regulated, indicating simultaneous activation of multiple signaling pathways in response to disruption of PSI and PSII complexes. The genome wide transcriptomic and proteomic analysis of the ∆
psaA
and ∆
psbA
deletion mutants revealed a simultaneous up and down regulation of the specific groups of genes located in nucleus and chloroplasts suggesting a complex circuitry involving both retrograde and anterograde signaling mechanisms responsible for the coordinated expression of nuclear and chloroplast genomes. |
---|---|
ISSN: | 0167-4412 1573-5028 |
DOI: | 10.1007/s11103-011-9731-y |