Stable delineation of the ischemic area by the PET perfusion tracer 18F-fluorobenzyl triphenyl phosphonium after transient coronary occlusion

(18)F-fluorobenzyl triphenyl phosphonium (FBnTP) has recently been introduced as a myocardial perfusion PET agent. We used a rat model of transient coronary occlusion to determine the stability of the perfusion defect size over time and the magnitude of redistribution. Wistar rats (n = 15) underwent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of nuclear medicine (1978) 2011-06, Vol.52 (6), p.965-969
Hauptverfasser: Higuchi, Takahiro, Fukushima, Kenji, Rischpler, Christoph, Isoda, Takuro, Javadi, Mehrbod S, Ravert, Hayden, Holt, Daniel P, Dannals, Robert F, Madar, Igal, Bengel, Frank M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:(18)F-fluorobenzyl triphenyl phosphonium (FBnTP) has recently been introduced as a myocardial perfusion PET agent. We used a rat model of transient coronary occlusion to determine the stability of the perfusion defect size over time and the magnitude of redistribution. Wistar rats (n = 15) underwent thoracotomy and 2-min occlusion of the left coronary artery (LCA), followed by reperfusion. During occlusion, (18)F-FBnTP (92.5 MBq) and (201)Tl-thallium chloride (0.74 MBq) were injected intravenously. One minute before the animals were sacrificed at 5, 45, and 120 min after reperfusion, the LCA was occluded again and 2% Evans blue was injected intravenously to determine the ischemic territory. The hearts were excised, frozen, and sliced for serial dual-tracer autoradiography and histology. Dynamic in vivo (18)F-FBnTP PET was performed on a subgroup of animals (n = 4). (18)F-FBnTP showed stable ischemic defects at all time points after tracer injection and reperfusion. The defects matched the blue dye defect (y = 0.97x+1.5, R(2) = 0.94, y = blue-dye defect, x = (18)F-FBnTP defect). Count density analysis showed no defect fill-in at 45 min but slightly increased activity at 120 min (LCA/remote uptake ratio = 0.19 ± 0.02, 0.19 ± 0.05, and 0.34 ± 0.06 at 5, 45, and 120 min, respectively, P < 0.05). For comparison, (201)Tl showed complete redistribution at 120 min (LCA/remote = 0.42 ± 0.04, 0.72 ± 0.03, and 0.97 ± 0.05 at 5, 45, and 120 min, respectively, P < 0.001). Persistence of the (18)F-FBnTP defect over time was confirmed by in vivo dynamic small-animal PET. In a transient coronary occlusion model, perfusion defect size using the new PET agent (18)F-FBnTP remained stable for at least 45 min and matched the histologically defined ischemic area. This lack of significant redistribution suggests a sufficient time window for future clinical protocols with tracer injection remote from the scanner, such as in a stress testing laboratory or chest pain unit.
ISSN:0161-5505
1535-5667
DOI:10.2967/jnumed.110.085993