Formulas for intrinsic noise evaluation in oscillatory genetic networks
The linear noise approximation is a useful method for stochastic noise evaluations in genetic regulatory networks, where the covariance equation described as a Lyapunov equation plays a central role. We discuss the linear noise approximation method for evaluations of an intrinsic noise in autonomous...
Gespeichert in:
Veröffentlicht in: | Journal of theoretical biology 2010-11, Vol.267 (2), p.223-234 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The linear noise approximation is a useful method for stochastic noise evaluations in genetic regulatory networks, where the covariance equation described as a Lyapunov equation plays a central role. We discuss the linear noise approximation method for evaluations of an intrinsic noise in autonomously oscillatory genetic networks; in such oscillatory networks, the covariance equation becomes a periodic differential equation that provides generally an unbounded covariance matrix, so that the standard method of noise evaluation based on the covariance matrix cannot be adopted directly. In this paper, we develop a new method of noise evaluation in oscillatory genetic networks; first, we investigate structural properties, e.g., orbital stability and periodicity, of the solutions to the covariance equation given as a periodic Lyapunov differential equation by using the Floquet–Lyapunov theory, and propose a global measure for evaluating stochastic amplitude fluctuations on the periodic trajectory; we also derive an evaluation formula for the period fluctuation. Finally, we apply our method to a model of circadian oscillations based on negative auto-regulation of gene expression, and show validity of our method by comparing the evaluation results with stochastic simulations. |
---|---|
ISSN: | 0022-5193 1095-8541 |
DOI: | 10.1016/j.jtbi.2010.08.025 |