Tight rank lower bounds for the Sherali–Adams proof system
We consider a proof (more accurately, refutation) system based on the Sherali–Adams ( SA) operator associated with integer linear programming. If F is a CNF contradiction that admits a Resolution refutation of width k and size s , then we prove that the SA rank of F is ≤ k and the SA size of F is ≤...
Gespeichert in:
Veröffentlicht in: | Theoretical computer science 2009-05, Vol.410 (21), p.2054-2063 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider a proof (more accurately, refutation) system based on the Sherali–Adams (
SA) operator associated with integer linear programming. If
F
is a CNF contradiction that admits a Resolution refutation of width
k
and size
s
, then we prove that the
SA rank of
F
is
≤
k
and the
SA size of
F
is
≤
(
k
+
1
)
s
+
1
. We establish that the
SA rank of both the Pigeonhole Principle
PHP
n
−
1
n
and the Least Number Principle
LNP
n
is
n
−
2
. Since the
SA refutation system rank-simulates the refutation system of Lovász–Schrijver without semidefinite cuts (
LS), we obtain as a corollary linear rank lower bounds for both of these principles in
LS. |
---|---|
ISSN: | 0304-3975 1879-2294 |
DOI: | 10.1016/j.tcs.2009.01.002 |